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ABSTRACT

Li, Jian. Ph.D., Purdue University, August 2005. Inventory Models with Multiple 
Order Opportunities. Major Professor: Suresh Chand.

We examine the structure of the optimal ordering policies for several 

inventory models with multiple order opportunities. The inventory models that 

are examined in this thesis are: 1 ) the newsvendor model with a second order 

opportunity; 2 ) the stochastic multi-period inventory model with limited order 

opportunities; and 3) the stochastic multi-period inventory model with two supply 

modes.

For 1), we develop three models (Models I, II, and III) that differ in the 

timing of the second order. In all three models, the first order is placed for 

delivery at the beginning of the season. In Model I, the second order quantity is 

determined at the beginning of the season for delivery at a pre-specified time. In 

Model II, the second order quantity is determined at some pre-specified time that 

can be any where during the season. In Model III, both the timing and quantity of 

the second order are determined dynamically.

For Model III, we establish for the first time that under appropriate 

conditions, the decision to place a second order is characterized by a time- 

dependent (i',5 ) policy. A counterexample is presented that suggests that the

policy structure under more general conditions would likely be more complex. 

Model II is a generalization of the model of Fisher et al. (2001). We show that 

that under mild regularity conditions, this problem has sufficient structure to
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reduce to a sequential search of two programs, each of which has at most one 

local minimum. For Model I, we establish robust conditions under which the 

optimization behaves well.

For 2), we examine a model under the assumptions that shortages are 

backordered, demand density functions fall in PF2 family and unit purchase cost 

is non-decreasing as we get closer to the end of the problem horizon. We show 

that a time varying (s,S) policy is the optimal decision rule for this model.

For 3), the two supply modes differ in their delivery leadtimes. The chapter 

contributes by showing that there are unique “order up to" levels to determine the 

order quantities from these two suppliers. We identify conditions when it is 

optimal to order from just one supplier or from both. In case it is optimal to order 

from both in a period, we show that at the beginning of the period, if the 

beginning inventory level is between a certain pair of points, then it is optimal to 

raise the inventory position to the higher point through a slow order. However, if 

the beginning inventory position is lower than the lower point, then the inventory 

level is first raised up to this point through a fast order and then the inventory 

position is raised up to the higher point through a slow order. If the beginning 

inventory is higher than the higher point, no order needs to be placed. The 

optimal policies in this chapter are supported by the property that the cost is 

unimodal in the beginning inventory position and convex in the beginning 

inventory level. We need the PF2 density assumption to prove this property.
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CHAPTER 1. INTRODUCTION AND THESIS OVERVIEW

1.1. Introduction

The overall goal of this research is to examine the structure of optimal 

ordering policies for several inventory models with multiple order opportunities. 

The inventory models that are examined in this thesis are: 1) the newsvendor 

model with a second order opportunity: 2 ) the stochastic multi-period model with 

limited order opportunities: and 3) the stochastic multi-period model with two 

supply modes.

The traditional newsvendor model assumes a single order opportunity 

before the start of a selling season facing a random demand so that the expected 

cost of meeting the demand by the order is minimized. We develop a discrete

time model of the selling season. We study the impact of having an additional 

order opportunity on the structure of the optimal policy in terms of the first order 

quantity, time to place the second order and the second order quantity.

The stochastic multi-period inventory model refers to a sequence of 

decisions -  how much to order -  at the beginnings of the periods each facing a 

random demand, which is reveled after the order decision, so that the expected 

cost of meeting demand in the periods is minimized. We study the impact of the 

“scarcity of order opportunities” on the structure of the optimal policy in terms of 

time to place an order and how much if ordering. By scarcity of order 

opportunities, we mean that the number of orders that can be placed is less than 

or equal to the number of periods.
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The stochastic multi-period model with two supply modes refers to a 

sequence of decisions -  how much to order from each supply mode -  at the 

beginning of every period facing a random demand, so that the total expected 

cost over the problem horizon is minimized. We study the structure of the 

optimal policy, in terms of two order quantities, when one supply mode has 

instant delivery and the other one has less-than-1 -period delivery leadtime.

Demand is independent across periods. An important class of demand 

density frequently used in this thesis is the PF2 density. This class of density 

includes Exponential distribution, Gamma with a >  1, Weibull with a >  1 , 

Truncated normal, Normal, Laplace, Exponential family, Noncentral F- 

distribution, Noncentral t-distribution, Noncentral chi-square, Kolmogoroff-Smiroff 

distribution, Uniform on (0,1) etc. Thus PF2 includes most of realistic demand 

density functions.

1.2. Thesis Overview

To study the newsvendor problem with a second order opportunity, we 

have developed three models that differ in the timing of the second order. In all 

of the three models, the first order is placed for delivery at the beginning of the 

season. In Model I, the second order quantity is determined at the beginning of 

the season for delivery at a specified time. In Model II, the second order quantity 

is determined at some pre-specified time that can be any where during the 

season. In Model III, both the timing and quantity of the second order are 

determined dynamically.

In the most general setting that we consider (Model III), an initial order is 

received at the start of the selling season; subsequently, a second order with a 

positive delivery leadtime is placed if conditions so warrant. Until the second 

order is received, as much as possible of demand is filled from inventory-on-hand
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or from pipeline inventory; additional demand is treated as lost sales. For this 

fully dynamic setting, in Theorem 4, we establish for the first time that under 

appropriate conditions, the decision to place a second order is characterized by a 

time-dependent two-number (5 ,5) policy: at each decision epoch during the

season, a second order is placed to bring the inventory position to the optimal 

target S , only if the inventory position is below the threshold 5 . A 

counterexample is presented that suggests that the policy structure under more 

general conditions would likely be more complex.

The analysis of this fully dynamic model exploits the optimal policy 

structure of the partially dynamic Model II in which the order quantity but not 

order timing is determined dynamically. This model is a generalization of the 

model of Fisher et al. (2001) since unlike them we allow backorder costs to 

depend on the duration of the fulfillment delay. While Fisher et al. demonstrated 

that this cost minimization problem is not convex; we show that that under mild 

regularity conditions (Theorem 3), this problem has sufficient structure to reduce 

the optimization problem to a sequential search for two programs, each of which 

has at most one local minimum.

Finally, Model II and Model III build on the structural properties of the fully 

static Model I in which both orders are placed before the start of the season. 

This model is closely related to the models of Donohue (2000), Iyer et al. (2003), 

and Barankin (1961). Theorem 1 identifies the elegant structure of this 

optimization problem which is a pre-requisite to establishing conditions under 

which the underlying optimization problem is well behaved. Hence, Theorem 1 

leads to Theorem 2 that establishes robust conditions under which the 

optimization behaves well.
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Since our representation of the problem allows for both backorders and 

lost sales, altogether these three model variations provides an integrated view of 

the growing literature on the newsvendor model with a second order opportunity.

To study the stochastic multi-period problem with limited order 

opportunities, we consider a discrete-time inventory decision setting where the 

number of orders that can be placed is less than the number of periods that can 

be used for order placement. Facing this constraint, the decision is how to 

optimally place orders in terms of ordering time and quantity. Recall that the 

number of periods is greater than the number of orders; the decision maker 

needs to optimally allocate the limited order opportunities. A key feature of this 

decision is optimally and dynamically allocating these opportunities. We show 

that a time varying (s, S) policy is the optimal decision rule under the 

assumptions that shortages are backordered, demand density functions fall in 

p f 2 family and unit purchase cost is non-decreasing in the ordering time. Under 

this rule, the decision maker places an order to raise the inventory level up to S 

whenever it is less than s and there is an order opportunity left. In fact, .9 and S 

depend on the time and the number of order opportunities left.

It is worth mentioning that in Model III of Chapter 2, the decision on the 

second order shares the feature of the model in Chapter 3 that limited order 

opportunities are to be optimally utilized. However they differ in the way the 

shortages are treated. Recall in Model III of Chapter 2, after the placement of the 

second order, as many as possible of demand unmet from on-hand inventory are 

accepted as backorders as far as they can be satisfied from the second order 

delivery, and any additional demand are lost sales. In the model analyzed in 

Chapter 3, all shortages are accepted as backorders. This difference leads to the 

different result that the structure of the optimal policy for Model III may be 

complex when the delivery leadtime for the second order is positive while the
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structure of the optimal policy for the model in Chapter 3 is a simple (j ,5) policy 

under suitable conditions.

To study the stochastic multi-period inventory problem with two supply 

modes, we consider a discrete-time inventory decision setting where two orders 

are placed at the beginning of each period: one order has an instant delivery 

(referred as “fast order” hereafter) and the other one has a less-than-a-period 

delivery time (referred as “slow order” hereafter). Under such a setting, the 

general question is how to make optimal inventory decisions in each period, in 

terms of the inventory level and the inventory position (or, equivalently, the 

quantities for the fast order and the slow order). Under some conditions, we 

show that if the beginning inventory level is between a certain pair of points, then 

it is optimal to raise the inventory position to the higher point through a slow 

order; However if the beginning inventory level is lower than the lower point, then 

the inventory level is first raised up to this point through a fast order and then the 

inventory position is raised up to the higher point through a slow order. If the 

beginning inventory is higher than the higher point, no order needs to be placed.
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CHAPTER 2. NEWSVENDOR PROBLEM WITH A SECOND ORDER
OPPORTUNITY

2.1. Introduction

Traditionally, in many industrial settings ranging from agriculture to 

fashion, the decision of how much to procure of a product is made well before the 

start of a well-defined selling season. Consequently, the decision-maker is 

unable to take advantage of subsequent information that becomes available as 

the season draws closer. As exemplified by its pioneering use in the 1980’s by 

Benetton, the fashion retail giant, providing a second order opportunity around 

the start of the season, can significantly reduce markdowns and leftover 

inventory. Propelled by this and related innovations in supply chain 

management, researchers have begun a re-examination of analytical models of 

inventory management that support such decision-making. Much of this effort 

has focused on incorporating a second order opportunity into the single-period 

newsvendor model that determines the optimal order quantity under demand 

uncertainty. The range of applications has been extensive. It includes models 

on quick response (Fisher and Raman 1996), catalog sales (Eppen and Iyer 

1997), planning hybrid seed inventories (Jones et al. 2001) and electric power 

(Iyer et al. 2003).

2.1.1. Overview of Events and Decision Variables 

Our goal in this chapter is to provide a comprehensive treatment of the 

newsvendor problem with a second order opportunity. At the start of the pre

season, as in the conventional newsvendor problem, the first order is placed for 

delivery at the start of the selling season. Until the second order is placed, as
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much as possible of the demand is filled from inventory-on-hand; the rest is 

backordered (incurring shortage costs), with a commitment to fill it from the 

second order. Using the updated demand distribution and the current status of 

its stock, the decision maker places the second order for delivery after a pre

specified leadtime in the season. The retailer continues to accept demand until 

all inventory on-hand and on-order is depleted. Demand that cannot be filled 

from the second order, is considered lost, or effectively, satisfied from outside the 

system. Hence, under this framework the decision maker must make three inter

related choices: the first order quantity, when to place the second order, and the 

second order quantity.

2.1.2. Three Models 

This broad view on the timing of the procurement decisions leads to the 

three models that are presented and analyzed in this study. Together these 

three models capture this rich problem domain that allows for updating demand 

distributions between the two ordering opportunities, and allows the choice 

between backordering demand and lost sales. In Model I, the static case is 

considered: all three decisions are made before the start of the season without 

the benefit of any updated information. In Model II, the partially dynamic case is 

considered: the first order quantity is chosen, as in Model I, for delivery at the 

start of the season. Subsequently, the second order if there is one is placed at a 

pre-announced time, allowing the decision maker to make a more refined 

decision since it takes into account the status of the current stock and a more 

refined understanding of demand uncertainty. If the second order is placed at 

the start of the season, only information from the preseason is used to determine 

the revised demand distribution; if the second order is placed during the season, 

the revised distribution is updated from information collected during the 

preseason and the observed demand in the initial selling season. Finally, Model 

III captures the fully dynamic case since both the timing and quantity for the
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second order are determined dynamically as updated information on demand 

and inventory is processed.

2.1.3. Contribution of this Chapter

In this chapter we focus on elucidating the structure of optimal policies. 

Since our representation of the problem allows for both backorders and lost 

sales, it provides an integrated view of the growing literature on the newsvendor 

models with a second order opportunity. In particular, Model I generalizes the 

seminal model of Barankin (1961); Model II solves a generalized version of the 

problem considered by Fisher et al. (2001); and, Model III establishes for the first 

time the structure of the optimal policy for the ordering time and quantity in a 

dynamic second order decision problem. Our modeling framework nicely 

complements the recent work of Milner and Kouvelis (2002) whose terminology, 

(static, partially dynamic and fully dynamic,) we have adopted. The key 

differences are that 1 ) they do not allow for partial backorders; and, 2 ) they focus 

on examining the interplay between the value of information and flexibility in their 

three problem variants, while we focus on elucidating the problem structure 

under rather general conditions.

2.1.4. Organization of this Chapter

The remainder of the chapter is organized as follows. In Section 2, we 

present the formulation and analysis for Model I. Followed in Sections 3 and 4 

are, respectively, the formulation and analysis for Model II and Model III. Related 

literature is reviewed at the end of each modeling section. This chapter ends with 

some conclusions in Section 5.
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2.2. Model I: The Static Case

2.2.1. Model Description 

We develop a discrete time model of the selling season that consists of T 

periods numbered 1,2, ••• ,T. The demand in each period is random and 

independent across periods. At the beginning of period 1 (or at the start of the 

season), the decision maker places two orders. The first order is delivered before 

demand is realized in period 1 and the second order is delivered at the beginning 

of period L + 1 (after demand is realized in the first L periods). Demand in 

excess of the first order is accepted to be filled from the second order as long as 

sufficient stock remains. Demand that cannot be filled from the second order, is 

considered lost, or effectively, satisfied from outside the system. Any leftover 

inventory at the end of the season is disposed off at a known cost. The decision 

maker must choose these two order quantities to minimize the total expected 

cost of meeting the demand. This cost is the sum of the purchase cost of the two 

orders and the expected cost of backorders, lost sales and leftover inventory 

disposal at the end of period T .

2.2.2. Notation

Before formulating the problem it is convenient to define the following 

notation and terms.

Decision variables

Q0: The quantity delivered at the beginning of period 1 

Qt : The quantity delivered at the beginning of period L + 1 

= Qa+Q\ '■ The inventory position at the beginning of period 1 

Economic parameters 

c0 : The unit purchase cost for Q0

c,: The unit purchase cost for Qx
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Cj : The unit disposal cost charged at the end of the season 

cu : The unit lost-sales cost

bt : The unit backorder cost charged on cumulative backorders in period t ;

t = \ , ' " ,T

Demand variables

: The random demand in period / with probability density function (PDF) f t (•), 

cumulative distribution function (CDF) Ft (■), and complementary CDF Ft (•)

£ , : The cumulative demand in periods /, through t2; 1 < /, < t2 < T

6 ^  = £ i + £ i+1+••• + £, 

ft, t, (') > Ft„t2 ( ) > Ft„h ( ' ) : The P^F, ^D F anc* complementary CDF for , , 

respectively

State variables and their dynamics

x ,: The inventory level at the beginning of period t ; t =

yt : The inventory position (x, + on-order in period t ) at the beginning of period t ;

t = \ , - , T

These state variables evolve as follows.

t = 2,---,L

xi-1 “  4t-\ + Q\ t = L + 1

t = L + 2,---,T
=Qo’x, =

_ U t +Q, t = \,---,L 

^  [ x, t = L + l, — ,T

Note that y ,> x t .

Performance measures

Bl {xt,y l |£,) : The realized backorder cost in period t with a beginning inventory 

level x, and a beginning inventory position yt for a given demand ; t = \,---,T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

11

5 , ( w ,  l£ )  =

o if o < $ < x,

If x ,<Z,<y ,  

b, {y , -x , )  If y ,zs ,

Bt (x, ,y,)\  The expected backorder cost in period t\ t = \,---,T

5 , ( w , )  = f  B,(x„y,

= b, £ ' {%t ~ xt) f t  (£)■d%, + b, - x,) f t (£ )

= *>,(*/(.y,) -2 ? ,'(x,)) where ... (1)

5'*(x') = .['Zlf l (4, )d$ + £■x,/ , ($)<*$

* / ( * ) «  1 4 , m ) d ^

g l*\,t(ti+ i I Zl+\,t) : The realized total cost of lost sales and disposal with a 

beginning inventory level yL+l for a given demand %L+iT (Note that yL+l = xi+l due 

to the delivery of Q] )

„  / . „ j Cd (T i  + 1 — %L+l,T ) ^  ^i+l.r <  Ti+1
^i+i.r (Tr+i I Si+i,rj =  i / „  \ „ „

[ c h ?■ y l+i )  i f  4 i + i , r  — y l+\

Gl+] T (yL+1): The expected total cost of lost sales and disposal with a beginning

inventory level _yi+l

GL+vr{y L̂ ) =  f  G L + i J { y IM  I W ) / i +I, r f c +1, r ) ^ +1,r 

g, : The expected total cost of backorders in periods t through T , lost 

sales and disposal with a beginning inventory level x, and a beginning inventory 

position yt ; t = 1

s,(w,) + f  g l+, ( x , - ^ , y l - 4 l ) f l {4l )d4 l t = l , - , L - l
g, (x,>y,) = ... (2 )

B l { x l ^ l )  +  f G U \  j { y L- ^ i ) f i { ^ L) d L̂ t = L
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t c , (Q0)'. The minimum expected total cost of the T -pe riod  problem with an 

initial order Q0

2.2.3. Model Formulation 

We are now ready to develop Model I. The decision problem for IP} at the 

beginning of period 1 , which essentially determines the second order quantity 

0  =IP] - Q 0, can be formulated as

'M - x\

The first term of H x(xx,IPA) represents the purchase cost of the second

order, which is conveniently defined in terms of the inventory position; and the 

second term represents the operating cost in periods 1 through T for a beginning 

inventory level x, and a beginning inventory position IP} . Similarly, the decision 

problem for Qa prior to the start of the season can be formulated as

mm{TC[ (Q0) = c0Q0+hl (xl = 0 O)} ... (P1.2)

The first term of t c , (q0) represents the purchase cost of the first order;

and the second term represents the minimum expected total cost in periods 1 

through T with a beginning inventory level Q0, excluding the purchase cost for

Qq. We let IP'  (x,) be the optimal solution of (P1.1) and Q0* be the optimal

solution of (P1.2).
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2.2.4. Analysis and Results 

Since the first term in (P1.2) is linear, to understand the structure of 

problem (P1.2), it is sufficient to focus our analysis on the structure of /*,(*,) in

(P1.1), which in turn requires an analysis of / / . ( x , , /^ ) .  Since H {(x^IPx) is 

determined by the expected backorder costs in periods 1 through L via gt (x,,y,) 

and by GL+]T(yL+]), we begin our analysis by characterizing g, (x^y, ) ,  

GL+iT(yL+l), B,x{x,) and (AH proofs for Lemmas and Theorems below

for this chapter are provided in Appendix A.)

Lemma 1.

1) Btx(xt ) is concave increasing in x, ; and, Bty (y,) is concave increasing in yt .

2) GL+ltT(yu l ) is convex in yL+}.

3) & ( xpTi) is separable in x, and y l . Moreover, g, is convex in x ,.

It is important to notice that Bt (x,,^,) from (1) has the special structure 

that, since it is a linear function of the difference of B y (yt ) and 5/v(x ,), it is 

separable in x, and yt . An intuitive explanation follows by observing that B y(yt ) 

represents the expected sales, including backorders, in period t that are satisfied 

by the inventory position y t ; and, 5,v(x,) represents the expected sales that are 

satisfied in period t from the on-hand inventory x ,. Hence, the expected demand 

backordered in period t is the non-negative difference of these two quantities, 

each of which depends on one variable only. An important consequence is that 

g, (x,, v,) is separable in x, and y , .

Notice that Bt (x(, j , )  is a “cost” that is the difference of two concave 

functions, a fact that significantly complicates the analysis of our problem.
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However, GL+, T (yL+,) is convex in the argument which significantly facilitates the

analysis. Now, consider the first order optimality condition of H, (x „ IP , )  in (P1.1)

with respect to IP, , which is given by

d H , ( x , j p , )  | dgx{xx,ipx) 
dip, C' SIP,

Or, equivalently,

d l l , (x  !/>) _ ^  +Ci } P] t ( IF]) = 0 . . . ( 4 )
olr\ /=1

L

The second order derivative is - ^ b tf , l ( lP,) + (cu+ c d) f LT(lPl ) .  As can be seen
(=1

the second order derivative is not clearly positive or negative, suggesting that 

H , [ x „ l P , )  is in general not convex, or even unimodal in IP,, making intractable a 

full characterization. However, there is sufficient structure to come close to a 

complete characterization. Since we know from (4) that H , ( x „ I P , ) as a function

of IP, may have multiple minima and maxima, the order-up-to position i r :  

depends on x , ; and since x, is a non-negative state variable, IP ’ must be 

defined for all possible non-negative realizations of x ,. We proceed iteratively 

starting at x , = 0 .  To initialize set IP,0 = 0.  Now iteratively define IP, as the 

largest local minimum that is greater than IP, ' and yields the lowest cost. Note 

that under this procedure, as i increases, the target IP, increases, possibly 

skipping smaller local optima that have higher expected cost. Suppose that this 

procedure yields “ n " minima for H , (x ,,IP ,) denoted by IP,' < IP,1 <■■•< IP,” . Each

of these IP, values represents the target inventory position given that an order is 

placed and x, is positive. Now notice that in each interval [ / / f t h e r e  exists 

a unique value for x , , denoted by a1, such that H, ( x „ x , ) < H ,  (x , , / / f )  for 

ip ;- ' < X , <  a‘ and H , { x „ x , ) >  H , { x „ I P , ^  for a‘ < x , < I P ’ . Hence, in the interval
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I P * 1 ,a ') it is optimal not to place an order, and it is optimal to place an order 

Q, = IP{  - x ,  in the interval [ a ', / /* ] .  Formally, the optimal second order quantity 

is given by

Q ’  =

0 If IP,0 < x , < a '
V - l0 If IP, < x, < a' i = 2, — ,n 

IP, - x ,  If a‘ < x ,< IP , '  i =

0 If IP,n <x,

- ( 5 )

It follows from this policy that h, (x,) is piecewise convex. To solve (P1.2 

), rather than analyze h,{x, )  directly, we approach the problem by first 

considering the two functions introduced below.

H , ( x „ IP ,1) If IP,0 < x, < IP ,'

H , ( x „  IP,')  If IP,M < x, < I f f  i  = 2,— 

H , ( x „ x , )  If IP" < x,

k\ {xx) = H \ { xnx,)

It can be seen that /71(x) = min{yl (x1),^ 1(x1)] and it will yield the optimal policy 

defined in (5) above for the second order quantity. Except in the boundary case 

where ^ (x , )  and k , (x , )  are expediently set to be identically equal, k,(x, )

represents the expected cost if the second order is not placed, and, y,(x,)

represents the minimum expected cost given that an order must be placed to 

bring the inventory position to the IP,1 not less than and closest to x ,. To

proceed we need the properties of j ,  (x,) and k, (x,) given below.
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Lemma 2.

1) j x (x,) is piecewise convex in x ,, and A, (x,) is convex in

dj{ (x,) _ dkx (x,)
2) Jx, Jx:, at all x, = IP[ (/ *  0).

3) - --- -- is continuous and increasing in x,
Jx,

Since /z,(x) = min{y, (x,),&, (x,)}, it follows by (P1.2) that

TC,(Q0) = m in {c0Q0 + j \ (Q0),c0Q0 +kx (Q0)} - ( 6)

The advantage of representing TC, (£>0) by (6) is that we can exploit the structure 

of y,(x,) and &,(x,). Let Q ”  be the maximum between zero and the value of

x, that satisfies
Jx,

= -c 0, and Q(*** be the maximum between zero and the

dk. (x.)
value of x, that satisfies — = _Cq . Interestingly, because of Lemma 2, weJx,
can see Q ”  and Q *** fall in the same interval. This is because, it can be shown

that dJl (*l )
Jx,

J/t, (x, )

ip !
dx.

< dj\ (x,)

ip. dx.
dk, (x,)

IP!
dx.

and that ./,(x,) and A:, (x,)

are equal at each breakpoint IP ' . Hence c0x,+y, (x,) and c0x ,+£, (x,) are 

minimized in the same interval IPt'~] <x, <IP{ for some /, so that the solution at 

the breakpoint IPt' other than Q “  and Q*** can not be optimal. As a result only 

CofiT +k\ ( & ~ )  anc* c0Qo~ + J\ {Qo*) have to be compared to determine the initial 

order quantity, formalized in the next theorem.
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Theorem 1. The optimal solution g0* =argmin{co0 oM* +kx (& "* ) ,c 0Q," +J\ (0<f)} ■

While Q***, * i( 0 o*") and Q0** are easy to compute, calculating /|({2„**) can be

difficult because it requires selecting the appropriate breakpoint IP {. Hence, in 

general a line search would be required to obtain all admissible breakpoints 

before the choice between them can be made. Alternatively, we may put 

restrictions on the specification of the problem to guarantee that is

sufficiently well behaved in 1PX to yield one local minimum. The latter approach 

yields the following Theorem 2. For this theorem and some other results in the 

thesis, we need PF2 density for demand. We state a key property of PF2.

Variation Diminishing Property (VDP) of PF2

Let M (u)  be a real function on ( -00 ,00 ) ,  /  be PF2 on [0,oo) and zero on ( - q o , 0 ]  . 

Suppose M (u )  changes sign at most once on ( -00 ,00).  Then the transformation

g { y ) =  £ cM ( u ) f ( y - u ) d u

also changes sign at most once over ( -00 ,00) .  Moreover, if both g and M  

change sign once, their sign changes occur in the same order (see Karlin 1968).

Theorem 2.

1) If 1 = 0; equivalently, L>0 ,b i =--- = bL = 0 , then H x{xx,IPx) is convex in IPX.

2) If L = T,bx =--- = bT_l =0  and bT >0 , then H x[xx,IPx) is convex in IPX.

3) If L > 0, bx = ••• = bL_t =0,bL >0  and the monotone likelihood ratio property
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(MLRP) holds for over [0, c o ) , then H ] (xx,IPx) has at most one local
f \ , L  \ ^ l  )

maximum and one local minimum with respect to IPX.

L

4) If c, +^T&, - c i( <0 and 4  have independent PF2 densities, then
/=i

FIx{xxJPx) is unimodal in IPX.

5) If have independent PF2 densities, then H x[ x x,IPx) has at most one

local minimum and one local maximum with respect to IPX.

2.2.5. Related Literature 

Theorem 2 identifies five specifications each of which guarantees that 

either (3) has a unique root which is the only minimum, or H x[ x x,IPx) is 

increasing in IPX. Interestingly, the antecedents of Theorem 2 part 2) can be

traced to the work of Barankin (1961). In his model an “emergency” order is 

placed and delivered at the beginning of the season, while the second arrives at 

the end of the season, so that L is effectively equal to T . When this is the case 

it is easy to verify that under the conditions of part 2) the problem remains 

separable, and that it is convex in each of the two variables. This is also the 

case in the more recent two-order-opportunity model of demand management 

due to Iyer et al. (2003), which is directly related to the work by Barankin. In this 

model, an initial order, corresponding to Q0, is placed for delivery at the start of

the season. Subsequently, there is an information phase in which the demand 

forecast for the season is revised. This revised information is considered in 

placing the second order, Qx. And, this information is concurrently used to split 

demand into two groups, that which will be satisfied from Q0, and the rest that will 

be satisfied from Qx, and possibly, the unused portion of Q0. In this sense, this 

model also has an effective leadtime of L - T .  As will be discussed in the next
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section, incorporating forecast revision, based on information from the pre

season, can be easily accommodated in our construct of the problem.

Exploiting the benefit of updated information from the pre-season also 

underlies the work of Donohue (2000), whose model is a one-product variant of 

the model due to Fisher and Raman (1996); a similar model is also considered 

by Jones et al. (2001). In these models 1 = 0, so that demand is either satisfied 

from inventory on-hand or it is lost. Hence, as articulated in Theorem 2 part 1), 

this yields the convexity in IPt = Q0 + Qt .

The last three parts of Theorem 2, accommodate the case when L is 

between 0 and T ; but place mild but increasingly more restrictive regularity 

conditions as the modeling environment is enriched. Part 3) addresses those 

scenarios in which backorder costs are not time dependent; the densities must 

exhibit the frequently used monotone likelihood ratio property (Karlin and Rubin 

1956). When backorder costs are time dependent, part 4), accommodates the 

case when it is always more economical to use a unit from the second order to 

meet a backorder than to let it be lost; but the densities must exhibit the specific 

variation diminishing property of the PF2 class. Analogously, under arbitrary 

economic parameters, the densities must exhibit the more restrictive variation 

diminishing property of the PF3 class, which is a subset of the PF2 class. The

development of PFn densities is due to Schoenberg (1951); and, its initial

application to stochastic inventory models appears to be due to Karlin (1958, 

1968). Recently Porteus (2002), provides an intuitive explanation of this family of 

densities. Importantly, PF2 densities have the monotone likelihood ratio property,

and PF3, PF2 and MLRP densities include the classes of uniform, truncated 

normal and gamma families.
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2.2.6. Summary

To summarize, in this section we have developed a static version of the 

two-order-opportunity newsvendor model. Our key modeling innovation is that 

we allow for partial backorders, whose cost may be time-dependent, during the 

season until the second order is received. Once demand exceeds total stock, 

demand is lost. Our technical innovation is to observe that the resulting two- 

variable optimization problem is separable in its arguments. This allows us to 

develop an expedient sequential solution procedure, which can be naturally 

applied to the next two models. Since the problem need not be well behaved 

with respect to the second order decision, we develop and present mild regularity 

conditions that guarantee that the optimization problem becomes well behaved in 

the sense that it admits only one solution.

In the next two sections, we will use the static case as a crucial building 

block for more dynamic versions of the problems. Such problems have received 

significant attention in the recent literature, primarily because of the connection of 

such models to quick response practices.

2.3. Model II: The Partially Dynamic Case

As we discussed at the end of the last section, Model I can accommodate 

those settings in which information is updated between the placement of the 

initial order and the start of the season. Consequently, the second order is 

based on an updated understanding of the degree of uncertainty faced by the 

decision maker. Being able to defer, albeit at higher unit cost, the decision to 

place the second order until after the start of the season provides additional 

flexibility. It has the additional independent advantage of making up for faster 

rate of inventory depletion than anticipated when the first order was placed. It is 

the goal of this section to study the deferment of the second order, so that its 

quantity is dynamically adjusted for depletion of stock and enhanced by the 

possible availability of more refined forecasts of demand.
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2.3.1. Model Description 

This adaptation leads to the following generalization of Model I. In Model 

II, the second order, if there is one, is placed at the beginning of period z so that 

it is delivered at the beginning of period z + L ( < T  + 1). Consequently, in the 

event that during the first z - 1 periods the initial inventory, Q0, is depleted, we

continue to accept all additional demand as backorders for the guaranteed 

delivery at the beginning of period z + L .  At the beginning of period r ,  after 

observing the inventory level, xr , if necessary, we place an order of size 

Qr = IP T - x r , to bring the inventory position to its desired target level IPT. As in 

Model I, during periods z through z + L - 1, we only accept cumulative demand in 

excess of max{xr ,o} if it does not exceed 1PT. And, as in Model I, after the 

second order is depleted no backorders are accepted.

2.3.2. Notation

Since, the dynamics of Model II from periods r  to r  are analogous to 

those of Model I, its notation and analysis can be readily adapted to facilitate the 

formulation and analysis of Model II. As in Model I, characterizing the optimal 

lP t can pose computational challenges. However, for Model II, under mild 

regularity conditions like those of Theorem 2 for Model I, determining the optimal 

IPT becomes a well-behaved optimization problem. To proceed we need to 

amend and append the following notation.

Qr \ The second order placed at the beginning of period z for delivery at the 

beginning of period z + L

1PT = xt + Q t \ The inventory position at the beginning of period z after the second 

order is placed

State variables evolve as follows.
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x,_, t — 2,--- ,t + L - \ , t  + L + \,---,T

X ^ - ^ + Q r  t = T  + L

x , / = 1, —, r  — 1

y , = \  X , + Q r  t  =  T

t = z + \, — ,T

gT{xT,yT)\ The expected total cost of backorders in periods r  through T , lost 

sales and disposals with a beginning inventory level xr and a beginning 

inventory position y T (analogous to g, (x,,y,) in Model I)

h,(xt ) :  The minimum expected total cost of purchase for the second order,

backorders in periods t through T , lost sales and disposals with a beginning 

inventory level x , ; 1 < t < r

TC„(C?0): The minimum expected total cost of the T -period  problem with an 

initial order Q0

2.3.3. Model Formulation 

We are now ready to develop Model II. The decision problem at the 

beginning of period r , analogous to (P1.1) in Model I, can be formulated as

The first term of H r (xr,IPr ) represents the purchase cost of the second order,

which is conveniently defined in terms of the inventory position; and the second 

term represents the operating cost in periods r  through T for a beginning 

inventory level xr and a beginning inventory position IPT, exclusive of the 

purchase cost for Qt = IPT - x T.

min
IP>xT

... (P2.1)
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Similarly, the decision problem for Q0 prior to the start of the season can 

be formulated as

mm{TC„(Q0) = c0Q0 + h1(x] = & ) }  ••• (P2.2)

The first term of t c „  ( g 0) represents the purchase cost of the first order; and the

second term represents the minimum expected total cost in periods 1 through T 

with a beginning inventory level Q0, exclusive of the purchase cost for Q0. We let

7P/(xr) be the optimal solution of (P2.1) and Q *  be the optimal solution of

(P2.2).

2.3.4. Analysis and Results 

Since by (7) /*,(*,) in (P2.2) is essentially determined by hT{xT) from

(P2.1), we begin with its analysis. While hr (xT) is similar to fy(x,) in (P1.1), the 

significant difference is that while in Model I the starting value of x, could not be 

negative, that need not be the case here. This is because xr is now a state 

variable that can take negative realizations. Consequently, when xr is negative, 

at least for those customers whose demand was backordered, we must order a
r + I - l

minimum of -x r units at a unit cost cT + ^  bt . Hence, after a decision is made
t - T

at time r , the inventory position is non-negative. The definition of 7Pr° must be 

slightly modified from IP° in Model I, for those instances when xr is non-positive 

and / / r (0 ,0 )> / /r (0,/Pr')  holds. If H t (0,0)< H t (o,1P}) , IPT° is still zero; 

However, if / / r (0 ,0 )> //r (0,/Pr') ,  it is optimal to bring the inventory level to IP'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

24

To accommodate this contingency reset IPT° to -oo and define a1 as -oo. Now 

notice that when IP'~' is finite, in each interval [/P r' there exists a unique

value for xr , denoted by a ' , such that H , ( x „ x , ) < H , ( x „ I P , )  for I ^ - ' < x , < a i  

and H t ( x t , x t ) > H t ( x t , I P ^  for a' < xr < IP ‘ . Hence, in the interval (//?’ it is 

optimal not to place an order, and it is optimal to place an order Qz =IPJ - x T in 

the interval [a',7P/]. Formally, the optimal second order quantity, analogous to 

(5), is given by

Qr'

-xr If xr < IP
0 If IPr'~' < xr < a '  i  = l, — ,n 

I P j - x T If a' < x T < IPj  i  = \, — ,n 

0 If IP" < x

Hence, we must define j T ( x r ) and k T ( x T) ,  analogous to (x,) and A:,(x,) in 

Model I, as

J r ( X r )  =

K i X r ) :

H r (xr,0) If xr < IP r ° 

H t ( x t J p / )  If IP Ti ] < x T < l P '  

H t { x t , x t )  If IP J ' < x ;

\ H t (x t , 0) I f x r </Pr° 
[ H T { x r , x T)  If xr > i p :

- ( 9 )

It can be seen that /zr (xr ) = min{yr (xr ),&r (xr )} and it will yield the optimal policy 

defined in (8). Except in the boundary cases where / r (xr ) and £r (xr) are 

expediently set to be identically equal, k T { x T) represents the expected cost if the 

second order is not placed, and, yr (xr ) represents the minimum expected cost
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given that an order must be placed to bring the inventory position to the smallest 

ZP/ not less than xr .

In a deviation from Model I, we then precede recursively to define

•/>(*! ) = Z 6/ F {Z u ~ Xl ) f \ M u ) dZu + F J t (X 1 - ^ l . r - l ) A r - l ( ^ l . r - l ) ^ l . r - l/=! *'

k l (*1 ) = Z 6, F (£u~X\)fu + F^ (X> " ) A r - I
(=1 1

Here, the first term for each of _/,(*,) and A:, (jc, ) represents, the expected 

backorder cost in periods 1 through r - 1 . Thus, it follows that

TCu (Q0) = m m {c0QQ + j x(Q0) ,c0QQ+ k x{QQ)} ... (10)

whose derivation has taken advantage of (7) and Ar (xr ) = min{y'r (xr ),A:r (xr ) } . 

While hT{xr ) in (P2.1) inherits all the properties of /?,(*,) in (P1.1), it is

unfortunately not the case for y'^x,) of Model II: We are not able to develop

results similar to that in Lemma 2 to facilitate the solution for (10); This is 

because that the discontinuities that arises from (9) when n>  1 can not be 

smoothed away. Hence, being able to guarantee that an efficient computational 

scheme can be devised for finding Q*0 requires imposing mild regularity

conditions that guarantee the existence of no more than one local minimum.

This results in the following theorem that is analogous to Theorem 2.

Theorem 3.

1) If L  = 0; equivalently, L > 0 , b r =--- = £r+i l = 0 , then H t (xt,JPt ) is convex in IPT 

and TCn (0 O) is convex in Q0.
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2) If L = T - r  + \,br =--- = bT+L̂ 2 =0 and 6r+i_, > 0, then H T(x T,IPT) is convex in IPT 

and TCn (Q0) is convex in Q0.

3) If L > 0 ,  br =--- = bT+L_2 = 0 ,bI+L_t >0 and the monotone likelihood ratio property

(MLRP) holds • ■̂r over  | 0,oo), then H ( x T,IPr ) has at most one local
f r A IPl)

maximum and one local minimum with respect to IPT.

z + L - \

4) If anc* have independent PF2 densities, then
t  =  T

H t(xt, IPt ) is unimodal in IPr and T C „ (Q 0) is convex in Q0.

5) If have independent PF3 densities, then H t (xt,IPt) has at most

one local minimum and one local maximum with respect to IPT.

Notice that in part 2) of the theorem, to assure that the second order is 

delivered at the end of the season we have slightly redefined L . Moreover, 

whenever H r (x r ,IPT) is unimodal in IPt , hT[x T) is convex. This convexity 

facilitates its adaptation to incorporate forecast revision, as discussed next.

2.3.5. Forecast Revision 

While we have formulated both Model I and Model II without allowing for 

forecast revision, the models can easily accommodate forecast revision in the 

pre-season as well as additional updates based on observed demands under 

mild regularity conditions. Since Model I can be viewed as a special case of 

Model II with r  = 1, it is sufficient to focus on incorporating forecast revision into 

Model II. Let S be the vector of information from the pre-season and from 

demand during periods 1 through r - 1  that is equivalent to a sufficient statistic 

available at the beginning of period t  ; this statistic is used to determine posterior 

distributions of demand. The key to the analysis is to recognize that if hT{xT)
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conditional on the sufficient statistic is convex, then under the expectation over 

the distribution of S , it will remain convex and therefore /?,(*,) is convex by (7) 

(see Scarf 1959). Under the conditions of Theorem 2 parts 1) and 2), the 

convexity of hT(xT) is always assured so any updating method can be used. 

While for part 4), we must assure that the revised distributions remain in the p f 2

class. This is guaranteed if forecast revision is executed using conjugate priors 

(See, for example, Berger 1985).

2.3.6. Related Literature

It is important to notice that Model II is a generalization of the model 

considered by Fisher et al. (2001), that allows c0 to be different than cr and 

allows the backorder cost during the leadtime to be time-dependent. Fisher et al. 

focused on developing algorithmic solutions to the problem because they 

observed that this problem is not convex in the two decision variables. In 

contrast, we have shown that under mild regularity conditions that accommodate 

the case of normal demand considered by them, the problem can be reduced to 

a convex optimization problem in one variable.

While Model II allows for backorders of all unfilled demand until the 

second order is depleted, Eppen and Iyer (1997) considered the version of the 

problem in which demand must be filled only by the inventory on hand. 

Moreover, during the pre-season, the supplier agrees to a total maximal 

commitment that is proportional to the initial order quantity. An initial amount is 

chosen before the start of the season, and the second order, up to the capacity 

limit, is placed at the beginning of period r  with zero leadtime; the second 

quantity is based on an revised demand forecast, while allowing for returns from 

customers, an important feature of the catalog sales company that provided the 

motivation for that study. It is proven that this optimization problem is convex. 

The partially dynamic model of Milner and Kouvelis (2002), for the case of
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demand described by Brownian motion, directly generalizes the essential version 

of the model of Eppen and Iyer by making the leadtime positive.

2.3.7. Summary

To summarize, we have shown that solving Model II reduces to 

sequentially determining the initial order quantity after determining the second 

order quantity for all possible states of xr at the beginning of period r . If finding 

the target level entails minimizing a unimodal function, determining the initial 

order quantity reduces to finding the unique minimum of a convex function. 

Moreover under the same regularity conditions both Model I and Model II can be 

generalized to incorporate forecast revisions. Now that we have shown that 

Model I and II with and without forecast revision encompass many variants of the 

recent and early literature on newsvendor models with two purchase 

opportunities, we consider the final variant of the model in which both the second 

order quantity and its timing are determined dynamically.

2.4. Model III: The Fully Dynamic Case 

Using results from the previous two sections as building blocks, we 

consider the most general setting for the newsvendor model with a second order 

opportunity. Not only does this preserve the flexibility of determining the second 

order quantity dynamically, it offers the additional flexibility of determining 

dynamically when the second order is placed. Hence, if demand is higher than 

anticipated when the first order was placed, it is likely that the second order will 

be placed earlier in the season for a larger quantity. In contrast, if demand is 

lower than anticipated, the second order will be placed later in the season for a 

smaller quantity. It is the goal of this section, to formulate and analyze the 

structure of this problem.
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2.4.1. Model Description 

To proceed with the generalization, we amend the dynamics of Model II. 

As in Model II, in Model III we start the season with Q0 units in stock, so that

xi =Qo- Then at the beginning of each period t,t = - L  + \ , we determine

whether to place the second order at unit cost ct (ct < c,+l). If the second order is

not placed, we accept all demand in period /; that in excess of xt is backordered

for guaranteed delivery at some time in the future. However, if the second order 

is placed in period t , we continue to accept demand until the inventory position 

reaches 0, with the understanding that all backorders will be cleared when the 

second order is received. All subsequent demand is considered lost at a unit 

penalty cost cu.

2.4.2. Notation

Since the dynamics of Model III, are similar to those of Models I and II, 

adapting their notation facilitates the analysis. To proceed we need to amend 

and append the following notation.

c , : The unit order cost for the second order if placed at the beginning of period t ;

t = l , - - - ,T -L  + \

g ' ( x , , y t ) :  The expected cost in periods t through T with a beginning inventory 

level xt and a beginning inventory position y t after the second order is placed at 

the beginning of period t (analogous to g T(x r , y T) in Model II); t = \ , - - - ,T -L  + \ 

ht {xt ) \  The minimum expected cost in periods / through T with a beginning 

inventory level xt when the second order opportunity is still available, excluding 

the purchase cost for the first order; / = l,- - , r - L  + l

& ,(*,): The minimum expected cost in periods t through T when the second 

order is not placed at the beginning of period t , including the expected purchase
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cost for the second order in a future period; t = - L + \\  (kT_l+](xr_L+i) and

j T - L + 1 { x t - l + 1) are analogous to kr and j T in Model II, respectively;)

*, (x,) = b, £ (£ , - 1 , ) / ;  (£  )rf£  + f  hM (x, - £  ) f ,  (£  )rf£  for , = 1,- • ■, T -  L

The minimum expected cost in periods t through T when the second

order is placed at the beginning of period /, including the purchase cost for the 

second order; t = !,■■■,T - L  + l

j , { x <) =  ™ ™ { H < { x n I P , )  =  c , { I P , - x <) +  g , { x , ’ I P , )  1 -  ( 1 1 )

2.4.3. Model Formulation 

Based on the notation above, we can formulate the decision problem for the 

second order opportunity at the beginning of period t. Since there are two 

choices at the beginning of period t : either no order is placed incurring the cost 

kt (xt ) or an order is placed incurring the cost j t (x,) , we have

h,(xl ) = mm{kl (Xt) , j t (xt )} ... (P3.1)

With a beginning inventory level x ,, an order is placed in period t only when

k, { xt ) ^ J , { x,)-

Similarly, the decision problem for the first order quantity prior to the start of the 

season is formulated as

m in {TCm(Q0) = c{)Q{) + hi (xt =Q0)} ... (P3.2)
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2.4.4. Analysis and Results 

To proceed with the analysis notice that since period T - L  + 1 is the last period 

when an order can be placed, it follows that the optimal order quantity is given by 

the equivalent of (8). Hence, it follows that the optimal policy is generally quite 

complex, so that appealing policies of the form (s,S) ; that is, order up to S if the 

inventory level is below 5-, can not be optimal in general. This is despite the fact 

that under the conditions of Theorem 3, 2) and 4), h, (x,) is convex in x ,, which is

sufficient for the optimality of such policies in Model II. Unfortunately, while these 

conditions are sufficient to guarantee that for small enough x,, it is optimal to 

place an order in period t , they are not strong enough to sufficiently smooth the 

cost function fc,+1(x,+l) to assure that ht (xt ) is well-behaved in x, in general. In 

particular, we are able to generate robust counter examples with L > 0 that show 

that kt (iP*) > (see Table 2-1). As a consequence, in any meaningful

policy, j , {x , )  and (x,) may cross an even number of times, making (5 , 5 ) 

policies sub-optimal.

Table 2-1 A Counter Example

Parameters: L = 1, T = 3, cd = 2, cu - 15, c3 = 10, = 3 ,

/ 3 (x) = X3e~'iyX,/Lj = .01 ,c2 — 9,, f 2 (x) = /t,e“',3'v,/l2 = .01

b2 ip; .h M < ) k2(lP:;*)

3 107.795 1596.17 1624.82
4 100.76 1668.22 1735.46

While we are in general unable to establish that the optimal policy 

structure is well defined, under appropriate mild regularity conditions the optimal 

ordering policy is of the (s,S) class as stated in the following theorem.
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Theorem 4.

1) If L = 0 and demand have PF2 densities, then (5,,5,) policy is the

optimal decision rule for whether or not to place the second order when the 

second order opportunity is available.

2) If L>0 ,b l =--- = bT_t =0,bT>0,  and demand have PF2 densities, then

(s,,S,) policy is the optimal decision rule for whether or not to place the second 

order when the second order opportunity is available.

Under conditions of Theorem 4, we can show that in period t

j, (x,) > kt (x,) for x, > IP* , j t (x,) < kt (x,) for small enough x, and that j , (x,) and

kt (x,) cross only once. The intersection point of and kt (x,) is the order-

triggering point S', and the minimizer, IP*, from (11) is the order-up-to level S,. 

These conditions also imply that TCin(QQ) in (P3.2) is well behaved in Q0. This 

leads to the following theorem.

Theorem 5. Under conditions of Theorem 4 the optimal Q0 in (P3.2) is unique.

Although, as illustrated in the preceding two sections, Model I and Model II 

can accommodate forecast revision in the preseason as well as additional 

updates based on observed demands under mild regularity conditions since, the 

cost function hr(xT) conditional on the sufficient statistic is convex, we suspect 

that Model III, even under the conditions of Theorem 4, can not accommodate 

forecast revision since, the cost function ht(xt ) is unimodal, not necessarily 

convex.
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2.4.5. Related Literature

While variants of Models I and II have appeared in the literature, we are 

not aware of any work that has established the optimality of (s,S) policies for the

dynamically determined second order. Interestingly, Milner and Kouvelis (2002, 

2005) advocated the use of this policy in the lost-sales version of this problem. 

They presented results with computational experience in finding heuristically 

determined values of 5 and S for the case when demand (rate) follows a 

Brownian motion. In contrast, under the conditions of Theorem 4, determining 

the optimal choices for Q0 and the second order reduces to a series of one- 

variable optimization problems each with a unique solution.

2.5. Conclusions

In this chapter we have conducted a comprehensive analysis of the 

newsvendor problem with a second order opportunity by studying three model 

variations that differ in the timing of the second order. In all three models, the 

first order is placed for delivery at the beginning of the season. In Model I, the 

second order quantity is determined at the beginning of the season for delivery at 

a specified time. In Model II, the second order quantity is determined at some 

pre-specified time that can be any where during the season. In Model III, both 

the timing and quantity of the second order are determined dynamically.

Our focus has been on elucidating the structure of optimal ordering 

policies. For the static and partially dynamic cases, our integrative approach 

insightfully reveals the intuitive structure of the optimal inventory policy for this 

important problem setting. And, our approach also allows us to explain, why the 

policy structure may be significantly more complex under the most general fully 

dynamic case. In addition, we are able to show a correspondence between our 

modeling framework and many papers in the literature, thereby providing a 

unifying perspective on this class of problems.
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The key to our analysis is casting all three models as sequential decision

making problems, allowing us to reduce the optimization problems into sequential 

and embedded searches for decision variables. While we have considered 

cases where demand is backordered until the second order is delivered, our 

modeling approach can support the analysis of variants of this problem in which 

demand may only be filled from inventory-on-hand, as in the models considered 

by Milner and Kouvelis (2002). Therefore, it is easy to understand why in their 

static and partially dynamic cases, base-stock policies are optimal. While we are 

unable to fully characterize the optimal structure for the fully dynamic case, we 

are able to identify conditions under which the optimal ordering policy is of the 

form (s,S), a theoretically appealing inventory control policy. We are also able 

to show that under more general conditions the optimal control policy may be 

more complex. It remains to be determined whether (s, S) policies can be 

optimal when demand may only be filled from inventory on-hand.
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CHAPTER 3. STOCHASTIC MULTI-PERIOD MODEL WITH LIMITED ORDER
OPPORTUNITIES

3.1. Introduction

This chapter considers a discrete-time finite-horizon stochastic inventory 

problem where the decision maker observes the inventory position at the 

beginning of every period and decides whether or not to place an order and in 

what quantities. The problem differs from the classical multi-period stochastic 

inventory problem because we assume an upper limit on the number of orders 

that can be placed over the problem horizon. If the problem horizon consists of 

T periods and N  is the upper limit on the number of orders then we assume 

N  < T . The decision maker gets N  opportunities to place orders over T 

periods. It is in this sense that we call this a stochastic inventory problem with 

limited order opportunities.

Facing these limited order opportunities, the decision maker needs to 

optimally utilize them over T periods. A key feature of this decision problem is 

that, in addition to considering the inventory position, the decision maker will also 

need to consider the remaining order opportunities to decide when to place an 

order and how much. The focus is on the structure of the optimal policy.

3.1.1. Motivation

There are several motivations for us to study this problem. If N = T , then 

our problem becomes the same as the classical inventory problem where an 

order can be placed in every period. Since we permit N  < T , our results add to 

the literature providing a generalization of the classical inventory problem.
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Our model provides results for further analysis of the value of order 

flexibility (Milner and Kouvelis, 2002). Not only does this require the flexibility of 

determining order quantity dynamically, but also it requires the flexibility of 

determining dynamically when to place orders. In the third model of Milner and 

Kouvelis (2002), the timing and quantity of an order -  the second order -  need to 

be determined dynamically over a selling season. A conceptual extension of 

their problem is how to optimally place multiple orders over a selling season 

composed of many small time intervals, leading to a stochastic multi-period 

inventory problem with limited order opportunities.

Another motivation for the problem comes from the situation when a 

retailer has to share its ordering resources among two or more different items 

(say, Item 1 and Item 2). Consider a retailer who carries inventory of two 

different items that he buys from two different suppliers. Assume that the retailer 

has only one truck and replenishes inventory on a weekly basis. The retailer can 

replenish only one item in a week because he has only one truck. Thus, every 

week, the retailer will need to decide whether to replenish Item 1 or Item 2. This 

is a complex problem with no known solution to the best of our knowledge. While 

we do not provide a solution to this complex problem, our problem should serve 

as a sub problem in solving this and similar more complex problems.

3.1.2. Preview of Main Assumptions and Results

The specific problem that we consider assumes that the problem horizon 

has T periods. The on-hand inventory at the beginning of period 1 is given. 

Demand is independent across periods and has PF2 density. The decision 

maker first updates the inventory position at the beginning of a period and then 

decides whether or not to place an order, and how much if ordering. The delivery 

lead time for an order is assumed to be fixed and known; it could be zero or 

some positive integer. The unit purchase price is assumed to be non-decreasing
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as we get closer to the end of the problem horizon. The order cost could include 

a fixed cost in addition to the linear purchase price. Demands not met in a period 

from on-hand inventory are backordered. Unmet demands at the end of the last 

period are assumed to be satisfied by an emergency order. End-of-period 

leftovers in every period are charged a linear holding cost. Similarly, the model 

charges a linear backorder cost for a period for backorders at the end of the 

period.

The focus of the chapter is on establishing the form of the optimal policy. 

The chapter contributes by showing that a time varying (s,S) policy is optimal.

Under this policy, the decision maker places an order to raise the inventory 

position to S whenever it is less than 5 . In fact, 5 and S depend on the number 

of periods left in the problem horizon and on the number of the remaining orders.

3.1.3. Organization of this Chapter 

The remainder of this chapter is organized as follows. In section 2, we 

discuss our results with respect to the previous literature. In section 3, we 

describe and analyze a one-order opportunity model. This model is extended in 

section 4 to allow for multiple order opportunities. In section 5, we end this paper 

with some conclusions and discussion of the future research.

3.2. Linkage to the Literature 

Starting from Arrow, Harris and Marschak (1951), traditional multi-period, 

stochastic inventory decisions have focused on how much to purchase in each 

period. Literature discussing them is plentiful. Our intent here is to interpret our 

results and link these to the known results, not to give a detailed review of the 

literature. More examples and detailed review can be seen in Hadley and Whitin 

(1963), Porteus (1990) and Zipkin (2000).
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Several researchers have discussed the (s,S)  inventory control policy.

When the purchase cost is a linear plus a fixed cost, the well-known base-stock 

policy is not optimal. Assuming demand densities belong to PFF  family and 

unmet demand is lost, Karlin (1958) discussed the optimal policy for multiple 

periods. He also sought sufficient conditions for the (s,5) policy to be optimal. 

Scarf (1960) introduced the K  -convexity of a function and showed optimality of 

the (s,S)  policy. Veinott (1966) proved that (5 , 5 ) policy is optimal under new 

conditions which do not imply and are not implied by conditions in Scarf (1960). 

Porteus (1971) derived a generalized (s ,S)  policy assuming demand density 

functions belong to Polya density family. As shown, if the ordering cost does 

have a fixed component independent of order size, a time-varying (s, 5) policy is

optimal for each period when each period has an order opportunity. This 

research shows that the scarcity of order opportunities leads to the same 

structure of the optimal policy as a fixed order cost for each period.

In a continuous-time single season problem with two order opportunities, 

Milner and Kouvelis (2002, 2005) proposed models such that the time and 

quantity for the second order are determined dynamically as sales goes on 

during the selling season. They considered a time varying policy and computed 

corresponding parameters approximately to minimize the cost.

3.3. Single Order Opportunity

3.3.1. Model Formulation 

The problem horizon consists of T periods, starting at time 1 and ending 

at time T + 1. The periods are numbered as periods The demand in
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each period is positive, random and independent across periods, and its density 

function falls in PF2. The initial inventory x, or the inventory level at time 1

before placing an order, is a result of prior replenishment decisions, and 

assumed to be given. The decision maker gets opportunity to place an order at 

the beginning of each of periods 1,2, however, he can place at most one 

order throughout T periods. For ease of exposition, we assume that, no matter 

when the order is placed, it is delivered instantly. (In fact, we can see in 

Appendix B.5 that the case with positive delivery leadtime is analogous to the 

case with zero delivery leadtime.)

The unit purchase cost at time T ~ t  + 1 (or the time that is t  periods 

away from the end of the horizon) is cT, where cT is nonincreasing in r . (Explicit 

inclusion of a fixed ordering cost does not change the essence of the math, and a 

detailed discussion for it can be seen in Appendix B.4) Shortages are 

backordered and the backorder cost at the end of period T -  r +1 is charged at a 

rate of pT per unit. To rule out motive for carrying over shortages from time T to 

time T + 1, we assume /?,><?,. Leftovers at the end of period T - r  + l are 

charged a holding cost at a rate of hT per unit. Leftovers at the end of period T 

have a salvage value v per unit ( 0 < v < c r ). For simplicity of exposition, we 

assume p t = p  , hT = 0 and v = 0 for t  > 1. (Explicit inclusion of time-variant pT, 

hT and v does not change the essence of the analysis, and a detailed discussion

for it can be seen in Appendix B.3) The objective of the decision maker is to 

minimize the expected cost while optimally utilizing the one order opportunity.

Let V0(r ,y ) represent the expected cost over the last t  periods if there 

are zero order opportunities left and we have y  units of inventory at the 

beginning. Then, we have

vo (T,y) = p £ ’( f - y ) f T(€)d€+ f  K { T - i , y - 4 ) f r(£)d€
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with boundary condition F0(0,>>) = (), where / r (*) is the PDF of the demand, £, 

in period T - r  + l .  The first term of V0(z ,y )  is the expected backorder cost in

period T - r  + l ;  and the second term represents the expected cost in periods 

T - t  +  2 through T.

Define

O] (z ,y , IP )  = cT( l P - y )  + V0(z , IP )  ... (12)

Ox(z ,y , IP )  represents the cost for the last r  periods if 1P> y  and an order is

placed at time T - r  + l to raise the inventory level from y  to IP .

Let V,(z,y)  denote the minimum expected cost over the last r  periods if 

there is 1 order opportunity left and we have y  units of inventory at the 

beginning. Let 0^{z,y)  denote the minimum expected cost if an order is placed 

at time T - r  + l . (Note that the order placed at time T - r  + l is received instantly. 

Also, 0 order opportunities will be left for the remaining r - 1  periods.)

Let D s{z ,y )  denote the minimum expected cost if no order is placed at 

time T - r  + l .  Then we have

D,{z,y) = p [ y { S - y ) f r ( Z ) d ! ; + ^ V x{ z - \ , y - Z ) f r (4)dZ ...(13)

The first term of D y{z,y)  is the expected backorder cost in period T - r  + l; and

the second is the minimum expected cost of the last r - 1  periods.

3.3.2. Linkage to Model III 

Notice that Model III, where the second order needs to be optimally and 

dynamically placed over T periods, is related to this model. The difference is on 

the way the shortages after the placement of orders are treated. While the model
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in this chapter assumes that any demand that cannot be satisfied from the orders 

placed is backordered, charged backorder cost for the remaining periods and 

eventually satisfied at the end of the last period through an emergency order. 

Model III assumes that any demand that cannot be satisfied from the second 

order is lost no matter in which period it occurred and is charged a lost-sale cost.

3.3.3. Optimization Problems 

At the beginning of period T - r  + l , two decisions are to be made: whether 

to place an order now and how much if ordering. Depending on which one has a 

lower cost between O, ( r , y )  and D, ( r , y ) , the costs for ordering and no ordering, 

respectively, we make the choice on whether to order or not. That is,

Vl (T ,y )  = m m {O i ( r , y ) , D i ( r , y ) }  for r  < T  ... (P4.1)

It is optimal not to place an order if D l ( r , y ) < O l ( r , y ) .  If Ot ( r ,y )  < D, ( r ,y ) , it is

optimal to place an order. The optimal inventory level IP for order placement is 

determined through the following optimization problem

(r > t )  = min {o, ( r, y, IP) = ct ( I P - y )  + V0(r ,  IP)} .. . (P4.2)

3.3.4. Analysis and Results 

In what follows, we analyze (P4.1) and (P4.2) to dynamically determine 

the ordering time and order quantity for the order. We show that a time-varying 

“ (5 ,5) inventory policy” is optimal. In this policy, if the current inventory level

falls below 5 and there is an order opportunity left, then an order is placed to 

raise the inventory level to S .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

42

From the expression for V0( r , y ) ,  since the cost in each period is convex, 

it can be seen that V0( r , y )  is convex in y  with the limits lim T0(r,y ) = oo and
^  /  y - > - x

limF0(r ,y )  = oo. Therefore cTy  + V0( r , y ) is convex in y .  Let IP* { r )  be the

unique value of y  that minimizes cTy  + V0( r , y ) .

0 ] ( r , y , I P )  in (12), as a function of I P , is convex in IP  and is minimized 

at IP  = IP* ( r ) . Therefore Ot ( r , y )  in (P4.2) has a value of

c J P * ( r )  + F0(r ,Z P *(r))-c rj  for y < IP * ( r )  and has a value of V0(z , y )  for 

y > I P * ( r ) .

We are now ready to prove that it is optimal not to place an order if

y > I P * { z ) at time T - r  + l .

Lemma 3. Assume we are at time T - r  + l and the inventory level is y .  If 

y  > IP* ( r ) , then it is optimal not to place an order, i.e., D x( r , y ) < O x{ r , y ) .

Proof Cost for the last r  periods if we do not place an order is T>, ( r , y ) . Cost if 

we place an order is V0( r , y )  by (P4.2) since Ox{ r , y J P )  is increasing in IP over 

[ /T ’ (r),oo ). The proof follows since the D ,(r ,y )  solution, compared to the 

V0 ( r , y ) ,  has a flexibility of placing an order for the last r  -1 periods. m

By taking advantage of Lemma 3, (P4.1) becomes
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We next focus on the case when y < IP * ( r ) .  To compare 0 \ ( r ,y )  and Dx{ r , y ) ,  

it is sufficient to compare 0 ( r )  and £>,(r,y), where 0 ( r )  denotes 

cTIP* (r) + V0 {t,IP* (r)) and D\{r,y)  denotes Dl ( r ,y )  + cTy . Then it is optimal to 

place an order if 0 ( r )  < Dt(r ,y ) .

The question that needs to be answered next is: Given that we are at time 

T - r  + l and inventory level y < IP* ( r ) , for what values of y  is it optimal to place 

an order? We answer this question in a recursive manner by starting from r  = 1.

Case r  = l

In this case, we have an order opportunity at time T . With a beginning 

inventory level of y before the purchase decision, the cost if we place an order is

0 ( l) - c , y ,  and the cost if we do not place an order is D^{\,y).  To decide 

whether to place an order, we compare 0(1) and £>,(l,y), knowing that 

© ( l^ c . /P ’ ^  + F ^ l, / / ’ ’ ^ ) )  and £)|( l,y )  = Dl ( l,y )  + cly . It is easy to see that 

D ,( l,y ) = k0( l,y ) ,  thus £>,(l,y) is convex in y  with minimum attained at IP’ ( l ) , 

leading to 0 (l)<£>,(l,y) for y < l P * ( l) .  To conclude, a base-stock policy is 

optimal for r  = l :  If y < IP * { \ ) ,  then it is optimal to place an order and raise the 

inventory level to IP* ( l ) .

Case t >2

We show that an ( j,5 )  policy with S = IP* ( r )  is optimal for this case. We 

do so by showing that there exists y = y  ( r )  < IP* ( r )  such that £>,(r,y) = 0 ( r )  at
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/ ( r ) ,  and that D x{ r , y )  stays below 0 ( r )  for y  e ( / ( r ) , / P * ( r ) )  and stays 

above 0 ( r )  for y e ( - o o , / ( r ) ) .  The existence of / (r )  where £>,(r,y) and 

0 ( r )  intersect follows from the two lemmas below.

Lemma 4. 1) l i m D l ( r , y )  = co; 2) l i m D J r , y )  = cr .
v —>-00 V—+OC

Proof 1) Note that D l ( r , y )  = cry  + D , ( r , y ) . As y  reduces, cTy  will reduce at a 

rate of cr . However the cost of purchase will not decrease in future periods (from 

model assumption that cT is non-increasing in r )  and there exists a positive 

backorder cost. Therefore, £>x( r , y )  will approach oo as y  approaches - q o .

2) As y  increases, cTy  will increase at a rate of cr . And no other cost will be 

charged when y  approaches oo. Therefore the marginal cost of D x[ v , y )  is cT as 

y  approaches co. B

Lemma 5. £>l(r ,/P'’( r ) ) < © ( r ) .

Proof It is equivalent to showing that D, {t,IP* (r)) < V0 (t,IP* (r)) by their 

definitions. The inequality holds because the D, (r , /P*(r))  solution has flexibility 

of placing an order for the remaining periods while the V0 (t, IP* ( r ) )  solution does 

not have any remaining order opportunity. B

To show that D x( r , y )  stays below 0 ( r )  for y e ( / ( r ) , / / ,’ (r )) ,  it is 

sufficient to show that D x[ r , y )  is unimodal in y .  We show it in the following 

theorem.
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Theorem 6. For r  > 2 , we have

1) Dx{ r , y )  is unimodal.

2) There exists a unique y  ( r ) < I P *  ( r )  such that

f o r y < y ( T)
f o r j > / ( r ) .

Therefore, Fj (r,y) is unimodal in y  .

Proof See Appendix B.1. H

By Theorem 6, we actually show that the optimal policy at time T - r  + l is 

an (s, S) policy with parameters 5 = y  ( r ) , S  = I P * ( r ) . To summarize, we 

examined the question of how to dynamically make an order decision with 

respect to ordering time and quantity. We showed that a time-varying (s, S) 

policy is optimal.

3.4. Multiple Order Opportunities 

In this section, we extend our model in section 3 to allow for multiple order 

opportunities. Specifically, we suppose the decision maker can place at most N  

orders over the last T periods.

3.4.1. Model Formulation 

Suppose we are at time T - r  + l .  Let Vk ( r , y )  denote the minimum 

expected cost over the last r  periods if there are k order opportunities left and 

we have y  units of inventory. Let Ok ( r , y )  denote the minimum expected cost if 

an order is placed at time T - r  + l .
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Define

O, ( l , y ,  lP )  = c, ( I P - y )  + p g ( 4 - I P ) / ^ ) d 4 + ^ V i _l ( z - i , I P - 4 ) / , ( 4 ) d 4 . .  .(15)

for k  > 1 and any y .  Then Ok ( z , y , IP ) represents the minimum expected cost 

for the last z periods if 1P> y  and an order is placed at time T - r  + l to raise the 

inventory level from y  to IP .  The first term of Ok ( z , y , IP ) is the purchase cost 

for I P - y  units. The second term is the expected backorder cost in period 

T - r  + l .  And the last term is the expected minimum cost for the last r - 1  

periods.

Let D k {z ,y )  denote the minimum expected cost if no order is placed at 

time T - r  + l .  Then, we have

Dk(z,y) = p ^ - y ) f T^ ) d ^ + ^ V k( z - \ J P - ^ ) f t ^ ) d ^  ...(16)

for k > 1 and any y  . The first term of D k (z , y ) is the expected backorder cost in

period T - r  + l .  And the second term is the minimum expected cost over last 

r - 1  periods.

3.4.2. Optimization Problems 

The decision maker makes the optimal choice on whether to order by 

solving the following optimization problem:

Vk(z , y )  = m m {O k { z , y ) , D k (z ,y ) }  ... (P4.3)

It is optimal not to place an order if If Ok { z , y )<  D k {z,y) ,  then

it is optimal to place an order. The optimal inventory level after the order 

placement is determined by the following optimization problem
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° A T’ y)  = ™™{Ok(T,y,lP)} . . . (P4.4)

3.4.3. Analysis and Results 

From (15) and (16), it is easy to see that Ok (z ,y , IP )  and DkA(z , IP ) have 

the following relationship

In view of the expression above, we need to analyze the function defined below 

to study Ok ( r , y , IP )

In particular, we will prove by induction that D k(z , y )  is unimodal in y . Recall it 

was proved that D x( r , y )  is unimodal in y  for any r  in section 3. We proceed 

with the assumption that D k̂ ( z , y )  is unimodal in y  for any r ,  therefore 

Ok (z , y , IP ) , as a function of I P , is unimodal in I P .

Denote (r)  as the point that minimizes Ok (z ,0 , IP)  with respect to I P . 

That is,

By the unimodality of Ok(z ,0 , IP ) with respect to I P , we can see that IPk (r)  is 

actually the order-up-to level if an order is placed at time T - r  + l ,  and the 

corresponding minimum expected cost, Ok(z , y )  in (P4.4), is

° k (r > y>I P ) = cTIP  + D k_x (r, IP)  -  cry ... (17)

...(18)

7Tf(r) = min { Ok (z ,0 , lP )  }.
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°k {T>y) = Cr1Pk i T) + Dk-l (T’IPk (*")) -  CrT •

We are now ready to prove that if y  > IPk ( r ) , it is optimal not to place an

Lemma 6. If y  > IPk ( r ) , then it is optimal not to place an order.

Proof Cost for the last z periods if we do not place an order is D k ( r , y ) .  Cost if 

we place an order is Ok ( z , y , y )  (or Dk̂ ( z , y ) )  since Ok ( z , y , IP ) is non

decreasing in IP  over [/P /( r ) , o o ) . The proof follows since the Dk (z , y )  solution 

has one more order opportunity for the remaining r - 1  periods than the 

Dk_x(z , y )  solution has.H

By taking advantage of Lemma 6, (P4.3) becomes

We next focus on the case when y < I P k ( z ) to compare Ok ( r , y )  and Dk ( z ,y ) .  

By (17), to do so, it is sufficient to compare &k (r)  and Dk( r , y ) ,  where ©* ( r)

The question that needs to be answered next is: Given that we are at time 

T - t + 1 and have a inventory level y < I P k ( r ) ,  for what values of y  is it optimal

to place an order? We answer this question by proving that D k( r , y )  is unimodal 

in y  for any z , analogous to the single order opportunity case in section 3.

Theorem 7.

order.

mm {O k ( z , y ) , D k {z , y )  } i f y<IP*k (z)  

Dk { r , y )  i f f  -  IPk (r )

denotes cTIPk (r )  + Dk_t (r,/Pt*(r)).
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1) For r < k ,  Dk(z , y )  is convex.

2) For r > k  + 1, Dk{ r , y )  is unimodal. Therefore, there exists a unique 

y k (r )  < IPk (r )  such that

Therefore, an (s ,S)  policy with parameters s = y k* ( t ) ,S  = IPk* ( t ) is optimal, and 

Vk (r,y) is unimodal in y  .

Proof See Appendix B.2. a

To conclude, we have examined the question of how to dynamically place 

orders in a finite horizon setting where the number of orders that can be placed is 

less than the number of periods that can be used for order placing. Under our 

assumptions, we have shown that a time varying (^ S ) type policy is optimal.

Note that our focus is on the structure of the optimal policy, the 

corresponding computational issues are not addressed. Some researchers have 

discussed the computational issues for (s ,S)  policies (see Veinott and Wagner,

1965, Federgruen and Zipkin, 1984, Zheng and Federgruen, 1991). It can be 

seen that the scarcity of order opportunities leads to the same structure of 

optimal policy as for fixed order costs. It might be interesting to explore the 

feasibility of applying the known algorithms, or to develop new algorithms, to 

calculate the optimal policy parameters. Heuristics and bounds for the optimal 

policies are also interesting research topics.

for y  < y kt { r )  

for y > y k ( t )

3.5. Conclusions and Ideas for Future Research
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CHAPTER 4. STOCHASTIC MULTI-PERIOD MODELS WITH TWO SUPPLY
MODES

4.1. Introduction

4.1.1. Motivation

Outsourcing/ln-Sourcing is an important consideration for retailers and 

manufacturers in today’s global supply chain environment. Facing domestic 

issues like higher cost for labor, health care, raw material, and energy, etc., more 

and more companies are finding it economical to shift their production (or 

purchase) to countries abroad where costs are lower. However, delivery 

leadtimes for outsourcing from abroad could be long due to factors such as long 

shipping distances, queuing time at transfer stations (like ports, customs, etc.), 

security inspections, etc. Companies are using faster delivery methods to 

counter the inflexibility associated with long leadtimes. Faster-delivery methods 

include faster delivery mode and/or local production, etc. These methods 

provide the company a capability to react quickly to uncertain demands.

A natural decision question when considering outsourcing is how to 

balance the order quantities between suppliers with different delivery times. We 

build a stochastic, periodic-review inventory model to reflect this decision across 

periods with two suppliers -  a fast supplier and a slow supplier. In this model, 

the general question for the decision maker is how to make optimal inventory 

replenishment decisions in each period (or, equivalently, determine optimal order 

quantities for the fast order and the slow order). The criterion is to minimize the 

expected cost over the problem horizon.
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4.1.2. Preview of Main Assumptions and Results

The decision maker gets opportunity to place two orders at the beginning 

of each period: one order has a slow delivery time and the other one has a fast 

delivery time. The delivery time for the fast order is negligible. The delivery time 

for the slow order is a fixed value less than the review period. Demand is 

independent across periods and has PF2 density. Shortages are either 

backordered or lost. Leftovers incur a holding cost. Shortage and holding 

cost are linearly charged. The rates for these costs and demand in each period 

may vary over time. There is no fixed cost associated with ordering. The unit 

purchase price from the fast supplier could be higher than that from the slow 

supplier. There may or may not be information updating on demand distribution 

before the order decisions.

The chapter contributes by showing that there are unique “order up to” 

levels to determine the order quantities from these two suppliers. We identify 

conditions when it is optimal to order from just one supplier or from both. In case 

it is optimal to order from both in a period, we show that at the beginning of the 

period, if the beginning inventory level is between a certain pair of points, then it 

is optimal to raise the inventory position to the higher point through a slow order. 

However, if the beginning inventory position is lower than the lower point, then 

the inventory level is first raised up to this point through a fast order and then the 

inventory position is raised up to the higher point through a slow order. If the 

beginning inventory is higher than the higher point, no order needs to be placed. 

The optimal policies in this chapter are supported by the property that the cost is 

unimodal in the beginning inventory position and convex in the beginning 

inventory level. We need the PF2 density assumption to prove this property.
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4.1.3. Organization of this Chapter 

The remainder of this chapter is organized as follows. In Section 2, we 

review the related literature. In Section 3, we describe and analyze the finite 

horizon model. Some managerial insights are discussed in Section 4. We end 

this chapter with our conclusions in Section 5.

4.2. Linkage to the Literature 

The related literature includes papers studying the optimal inventory 

replenishment decisions for two delivery modes. One way to interpret two 

delivery modes is through “fast order” and “slow order”. The delivery with shorter 

time is called a fast order and the one with longer time is called a slow order. 

When the beginning on-hand inventory is too low, the probability that shortages 

will occur in a period is high and the shortage cost could be high. Therefore, it 

may be economical to have a fast order to replenish the on-hand stock. In the 

models of Barankin (1961) and Daniel (1963), the fast order is delivered instantly 

and the slow order is delivered at the end of the review period when it is placed. 

While Barankin derived the one-period optimal policy assuming the fast order is 

of a fixed amount, Daniel derived the multi-period optimal policy assuming the 

fast order can be any amount limited from above. The model that we present 

differs from Barankine and Daniel in that we allow the delivery leadtime for the 

slow order to be less than a period.

Some researchers have studied a periodic inventory system with two 

supply modes where the regular review cycle is greater than the supply leadtime 

and shortages are backordered (Chiang and Gutierrez, 1998, Fox et al., 2005, 

Fukuda, 1964 and Yi and Scheller-Wolf, 2003). In the model by Chiang and 

Gutierrez (1998), a review cycle consists of several periods. The delivery time 

for a fast order is one period and the delivery time for a slow order is r periods 

with x greater than 2. A slow order is placed only in the first period of a review
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cycle and a fast order can be placed in each period. In the model of Fox et al. 

(2005), the review cycle is 1 period and delivery leadtimes for two suppliers are 

zero. The supply with lower unit cost has a fixed cost and the supply with higher 

unit cost has no fixed cost. Still assuming zero leadtime for two suppliers, Yi and 

Scheller-Wolf (2003) differentiate supply by price uncertainty: one supplier has a 

constant unit price with limits on purchase quantity; the other one has a fixed cost 

plus fluctuating unit price with no limits on purchase quantity. The model with 

three supply modes in Fukuda (1964) assumes that a review cycle consists of 2 

periods. Order decisions are made only in the first period of a cycle. When the 

quantity with the longest delivery is zero, that model becomes a variant of our 

model. Our model differs from all these models in how we model the backorder 

cost. We allow the backorder cost to depend on the number of periods between 

when the backorder originated and when the backordered demand got met. In 

our model, there could be penalty (in addition to regular backorder cost) if a 

backorder is carried from one interval to next. This penalty could be positive or 

negative. We call this feature “penalty feature” of the model.

Another way to interpret two delivery modes is through “reserved order” 

and “normal order” . The delivery with longer time is called a reserved order, 

which is used to raise the inventory level in a future period. The delivery with 

shorter time is called a normal order, which is used to raise the inventory level in 

the current period. When the beginning inventory is not too low, although it may 

not be economical to have normal order delivered right now, we may order for 

future with a lower cost per unit. Some researchers have shown that it is 

economical to make use of reserved orders (Bulinskaya, 1964a, 1964b, Feng et 

al., 2005, Fukuda, 1964, Neuts,1964, Sethi et al., 2001 and Whittemore and 

Saunders, 1977). In their models, shortages in a period incur same per-unit 

shortage cost, no matter whether it is met by the reserved delivery at the end of 

the period or by delivery at the beginning of the next period. Therefore the
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delivery at the end of a period is to only raise the on-hand inventory level at a 

cheaper price.

4.3. Model and Analysis

4.3.1. Model Formulation 

The problem horizon consists of T periods, starting at time 1 and ending 

at time T + 1. The periods are numbered 1,2,■■■,!. With a beginning inventory 

level of z in period T - t  + 1, z - z  units are purchased for the fast order and 

I P - z  units are purchased for the slow order. The fast order is delivered 

instantly and the slow order takes A ( 0 < A < \ )  periods for its delivery so that

each period is divided into two intervals: the first interval is the part before the 

delivery of the slow order; and the second interval is the remaining part of the 

review period. The unit purchase cost is cue for the fast order and is c, n for the

slow order. The demand in each period and each interval is random, 

independent across periods and intervals and has p f 2 density. The cumulative 

demand in the first interval of period T - t  + 1 in excess of z but not beyond IP  is 

backordered at a rate of p t r  per unit; and those in excess of IP  (or not satisfied

in period t )  are backordered at a rate of p t per unit. The unmet demand in the

second interval is backordered at a rate of p  per unit. Consistent with the

“penalty feature" of our model, p, can be different from the sum of p/ r  and

p  . The on-hand inventory right before the delivery of the slow order (or at the

end of the first interval) in period T - t  + 1 is charged a holding cost at a rate of 

h r  per unit; and the inventory at the end of the second interval is charged a

holding cost at a rate of h per unit. The objective of the decision maker is to 

minimize the expected cost over T periods while choosing the quantities for the
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fast and slow orders in each period. This cost is the sum of the purchase cost of 

the two orders, the cost for backordering demand and the cost of holding 

inventory.

+ h EtX ' ( - a

Define

A (z>1P) = PtX E m in{(A - -  ■z)+ >(I P ~ z)}

where £ is demand in the first interval of period T - t  + l with PDF f i r (-)-

Then, for z < lP ,  Lt [z , IP ) is the sum of the expected backorder cost for the

demand met from the delivery of the slow order and the expected holding cost at 

the end of the first interval of period T - r  + l , with a beginning inventory level z 

and an on-transit inventory I P - z  . The first term of L, (zJP ) is the expected cost

for backordering the demand in the first interval which is not satisfied from the 

on-hand inventory z but satisfied from the slow order; and the second term is the 

expected holding cost for the first interval. When the beginning inventory z is 

less than zero, at most IP units of demand can be backordered and no holding 

cost is charged. When z is greater than zero, only demands greater than z and 

less than or equal to IP can be backordered and satisfied from the slow order,

and the expected holding cost is h r E (z~€r  )

Define

p, (y)  =
ptX E \ [ ^ * - y ) +

p , ( t ) "

+ h ,tE
I . A

+ s [ + T - + ) ]  y < o

for any y , where y  is the beginning inventory level for the second interval of 

period T - r  + l (after receiving the slow order) and <̂ + is its demand. A - iU ) 's 

the minimum expected cost for the last r-1  periods, with the beginning inventory 

level of z. Then R,(y)  is the minimum expected cost incurred in the second
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interval of period T - t  + 1 and the last r -1  periods, with a beginning inventory 

level of y  . For y  > 0, the first term of Rt (>>) is the expected cost of backordering

the demands which are not satisfied in period T - t  + 1; the second term is the 

expected holding cost incurred in the second interval; and, the last term is the 

minimum expected cost for the last t - 1 periods. For y <  0, the first term of

Rt (y ) is the expected backorder cost for the demand in the first interval unmet

from the delivery of the slow order; the second term is the expected backorder 

cost for the demand in the second interval; and, the last term is the minimum 

expected cost for the last / - I  periods.

The cost function for the last t periods can be given recursively as follows.

Define

V X ^ J P )  = c ,A *-z )  + c,..(IP-z) + L,(zJP)+ [R , ( lP -S iy f ^ ( t i_)d4i . 

Then, for z < z < I P ,  V , (z ,z , IP ) is the minimum expected cost for the last t 

periods, with a beginning inventory level of z , a purchase of z - z  units using the 

fast order and a purchase of I P - z  units using the slow order. L , ( z , IP )  is the 

expected cost incurred in the first interval of period T - t  + 1, with a beginning 

inventory level z and an in-transit inventory of I P - z .  R , ( y )  is the minimum

expected cost incurred in the second interval of period T - t  + 1 and the last r-1  

periods, with a beginning inventory level of y  .

4.3.2. Model Assumptions 

We make the following assumptions: 1) ct n + r  > c, e: it saves to meet a

demand through the fast order than first backorder it and then satisfy it through 

the slow order; 2) cte -  ctn + h v > 0: it saves to purchase a unit through the slow

order than to first buy it through the fast order and then hold it till the second
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interval. In our description above, we also assume that X is constant for each 

period. It will be seen from our analysis later that X can vary across periods as 

long as it is between 0 and 1. We assume all unmet demand are backordered, 

p, > p t r  and pt > p  A+. (Discussion for the shortage assumption can be seen in

Appendix C.7.) Finally, we also assume that c,n + p t r  - p t < c,_Xe for 2 < t < T  and

c h„  +  P x r  -  P i  <0:  rather than meeting a unit of demand in the first interval

through the fast order in the next period, it saves to meet it in the current period 

through the slow order.

4.3.3. Optimization Problem 

We are now ready to present the decision problem in period T - t  + l

below.

V \ z ) =  m\nJVt (z,z, IP)} ... (P5.1)

That is, the decision in period T - t  + 1 is to choose the optimal inventory level z* 

and the optimal inventory position IP* (or, equivalently, the fast order quantity 

z* - z  and the slow order quantity IP* - z * ) .  V,(z) is therefore the minimum

expected cost for the last t periods with a beginning inventory level of z before 

the order decision. We assume V0(z) = 0.

4.3.4. Analysis

We solve (P5.1) in a recursive way. In particular, we show that: 1) Vt (z) 

is convex and V’ (z) = -c /e for z < 0 ,  provided that Vt_x(z)  is convex and

K-i (z) = ~~c,-\.c f°r I. < 0 ; and 2) V, (z) is convex and V[( z) = -c, c for z < 0 .
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Since Vt (z )  is determined through (P5.1) and Vt (z ,z , IP )  is determined by 

T, ( j )  and Lt ( z , I P ) ,  we first study the properties of functions R,(y) and 

L t { z , lP ) .  Recall that

p , . A ( S r - y i ■h t Et 3 +

Pt ( y Y + p ,x  p ,x  + E  IX> (y ~ ) ] y < 0

(p,x +h. x ) f  fe- ~ y ) l x  fe- K+ ~ h,x f a x  - y )

+ f  vt - \ y ~ ^ ) l x ^ M ,

-P,y + P,xP,x + f  F'-> ( y - ^ r  ) f , x fe* )d^r y <0

y > 0

where f , x { Z x+) ar|d ptX+, respectively, are the PDF and the mean for the 

demand in the second interval of period T - r  + l .  Based on the expression for 

Rt ( y )  above, we can show that Rt (y )  is convex in y  . In fact, taking derivatives

for Rt (^ ) yields

dR, (y)  _
dy

d ‘ x , M
dy2

~{p,x + h.r  ) [ d r  )d$r + f  +  )l,r d r  )d^r +Kr T 2 0

-R + f+T-^OT'fe)^. y < °

k r + + r ) T . ( > + f + . > - + ) T . ( + R .  y ^ °

f  K - ; { y - * r ) f , . r d r ) dt r  T < 0

The convexity of R, (y )  follows since d  > o .

Similarly, we can study the properties of Lt { z , l P ) . With a little algebra, 

Lt (z J P ) can be expressed as
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Ll (z , lP )  = L \ t { z ) - L 2 , ( l P )  where

L l , W =  P , r  f  f a - - Z ) h -  f a -  R- + \ r  f  M,- ) L -  fa- R
L2P p ) = P . , - £ f a - - IP) L - f a - ) ^ -  

Based on the above expression for Lt [ z , IP ) , it is easy to derive the following 

conclusions for Lt (z , IP ) \  1) L t [ z , IP )  is separable in z and 1P\ 2) Lt ( z , IP ) is 

convex in z since L \ t (z )  is the newsvendor-type expected shortage and holding 

cost for a beginning inventory z; and 3) Lt (z , IP ) is concave in IP  since 

T2 ,(/P ), being newsvendor-type expected shortage cost as if IP  were the 

beginning inventory, is convex.

In the above analysis, if there is Bayesian updating on the demand 

distributions by using conjugate family, then ft and f  represent the updated

distributions, and they still belong to PF2 family. In this sense, Bayesian updating 

does not change our results.

We are now ready to study the properties of Vt ( z , z , I P ) . In particular, we 

show that V, (z ,z , IP ) is unimodal in IP  and is convex in z . We demonstrate it in

the following theorem. (All the proofs for Theorems and Results below are 

provided in the Appendix C.1-C.6)

Theorem 8.

1) V,{z,z,IP) is unimodal in I P , and there is a unique IP* (> 0) satisfying

d V ( z , z , I P )  r -  / \ r dR‘ { I p -%i  ) - ! ^e,p = + p„- if,,- fa- K - + f  - BIP ]f„- fa- R  = 0 •
2) Vt { z , z , I P ) is convex in z ,  and there is a unique z,*(>0) satisfying
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From Theorem 8 the optimal ordering rule at time T - t  + l is: 1) to

purchase IP* - z *  units for the slow order and purchase z* -  z units for the fast 

order if z < z * ; 2) to purchase IP ’ -  z units for the slow order if z* < z < IP ’ and 

not to purchase if z > I P * . Then by the definition of Vt ( z ) , we have

We next show that V,(z) is convex in z. We show it in the following 

theorem.

Theorem 9. Vt (z)  is convex in z , and V't ( z) = -c,  e for z < 0.

In the above analysis, we implicitly assumed that IP* > z/ .  If this is not so 

then only the order for the fast delivery is placed. And the target level IP* 

satisfies

In this case, the optimal ordering rule is: to purchase IP* - z  units for the fast 

order if z < IP* and not to purchase if z >  I P * . It can be seen that Vt (z) is still 

convex in z .

To complete the induction, let us study the properties of Fj(z) as the 

induction base. We form it in the following theorem.

V,(z ,z * , IP * )  If z < z *

v,U)=m z ^ j p ; )  i f z; < z < i p ; .

^ ( z , z , z )  I f  z >  IP*
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Theorem 10.

1) Vx(z_,z,IP) is unimodal in I P .

2) V, (z,z J P ) is convex in z .

3) Vx (z) is convex in z , and v[ ( z) = -c, e for z < 0.

By Theorem 10, we see that P,(z) is convex in z and that Vl'(z) = - c le. 

This is the induction base. This completes our recursive way to solve (P5.1).

4.4. Further Discussion 

Based on the results in Section 3, several managerial insights on how to 

balance the order quantities between the fast order and the slow order (i.e. 

between z*  and I P - z *  for given I P )  can be derived. In particular, we examine:

1) How do the cost parameters affect z * 7  2) How do cost parameters affect

IP *?  And, 3) how do the cost parameters affect the choice of delivery modes?

When the unit cost for the fast order increases, then it may become 

economic to reduce the quantity for the fast order and increase the quantity for 

the slow order. When the unit cost for the slow order increases, then it may 

become economic to reduce the slow-order quantity and increase the fast-order 

quantity. When the difference between the unit costs for the two orders 

increases, it may become economic to reduce the quantity for the fast order and 

increase the quantity for the slow order. We form it in the following proposition.

Proposition 1.

1) z* increases as c, „ or pt r  increases;

2) z* decreases as cte - c tn or cte increases; 3) z*  decreases as h ; increases.
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The following are some managerial insights on how the cost parameters 

affect IP * . When the unit cost for the slow order increases, it may save to

purchase less through the slow order. When the unit shortage cost for 

backordering demand which will be satisfied from the slow order increases, it 

may save to have fewer units that can be used for backordering. When the unit 

shortage cost for backordering demand in the entire period increases, it may 

save to have more units available for the period. When the unit holding cost for a 

period increases, it may save to decrease the total quantity available for the 

period. We form them in the following proposition.

Proposition 2.

1) IP* decreases as one of c, . p  , and h ,+ increases;
'  ' f , A  / ,  A

2) IP* increases as one of pt r  and p t increases.

It is intuitive that it is economic to use only the fast order when the unit

cost for the fast order is not at least h , higher than the slow order, and that it is
1 , A

economic to use only the slow order when the unit cost for the fast order is too 

expensive. In either case, the minimum expected cost is convex in the beginning 

inventory level before the inventory decision. We form it in the following theorem.

Theorem 11.

1) If there exists f  such that c„ + h. , < c r , then z * = I P *  and V (z)  is
'  t  ,e t  ,X t .n ’ t 1 ’ f  V — /

convex in z .

2). If there exists t° such that c > p  + c  , then z * = z,  IP*  is uniquely

dV A z j Z j P )
determined by —  ------------ = 0 and V A z )  is convex in z.  Furthermore,

dIP '

V. ( z , z , I P )  is unimodal in I P  if c. +p.  - p  <(c +p.  )./ +i v—5 5 / r+i.w “ t +\,a~ ^ +]  ̂ ,^n i ' , \ r )
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Theorem 11 indicates that under a mild cost condition the uniqueness of 

the optimal inventory level and/or inventory position in earlier periods does not 

depend on the number of delivery methods in future periods. In fact, part 1 does 

not require any further cost assumption while keeping the convexity of K U ) -  ln

contrast, although part 2 keeps the convexity of Vf  ( z ) , it changes the marginal

cost in period t° to c „ n + pf x_ from c„ when the beginning inventory is less than

zero. To insure the convexity of F„+1(z) the original cost assumption

cr+\ n + Pf+\ a Pf’+i < cf e ôr Per'°d 1°+1 is adjusted accordingly. Therefore,

result 3 suggests that our model allows for the situations where for some periods 

there is only one delivery mode available. Fisher et al. (2001) discussed 

essentially a two-period variant of our problem where the first period has only the 

fast-delivery mode and the second period has only the slow-delivery mode.

4.5. Conclusions

Although the consideration of production (or purchase) cost drives 

companies to outsource their products overseas, the difficulty caused by long 

delivery leadtimes (due to queuing time at transfer stations, security inspections, 

limited transportation capacity, out-of-date distribution system, etc.) necessitates 

the co-use of fast delivery methods ( like paying a premium to cooperate with 

local manufacturers, etc.). We build a stochastic, periodic-review model to 

examine the question of how to make optimal order decisions for the two orders 

at the beginning of each period. A stochastic dynamic program is formed to 

establish the uniqueness of the optimal quantities. Some managerial insights are 

derived. Recall that our model does not explicitly incorporate any specific factors 

causing long delivery time. Research incorporating them may be interesting.
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CHAPTER 5. CONCLUSIONS

5.1. Summary

In this thesis, we have examined several inventory problems with multiple 

order opportunities. In particular, we have examined the newsvendor problem 

with two order opportunities, the stochastic multi-period inventory problem with 

limited order opportunities, and the stochastic multi-period problem with two 

supply modes. Our focus has been on studying the form of the optimal policies.

The newsvendor problem with two order opportunities in Chapter 2 

examined three models differing in the timing of the second order, with the first 

order placed for delivery at the start of the selling season. In Model I, the second 

order is determined at the beginning of the season for the delivery at given time. 

In Model II, the second order is determined dynamically at a pre-specified time. 

In Model III, both the timing and quantity for the second order are determined 

dynamically.

For Model III, we have demonstrated, through a counterexample, that the 

form of the optimal policy for the second order is not necessarily of (s,s) type, 

therefore the first order is hard to determine. However, we were able to reveal 

some conditions under which the policy is optimal and therefore the optimal 

first order quantity is unique, as seen in Theorem 4 and 5. For Models I and II, 

although having observed that the second order quantity is hard to determine in 

general, we have developed mild regularity conditions under which both the first 

and the second order quantities are easy to determine, as seen in Theorems 1, 2 

and 3.
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The stochastic multi-period inventory problem with limited order 

opportunities in Chapter 3 examined how to optimally utilize N  order 

opportunities over T periods where N < T . We have shown that at the 

beginning of a period we consume an order opportunity only when the inventory 

level is low enough or less than a number depending on the number of periods 

remaining and the number of order opportunities that are still available for the 

remaining periods. Once an order is placed, the inventory level is raised to a 

number which, again, depends on the number of periods remaining and the 

number of order opportunities that are still available for the remaining periods. 

Both the order-trigger point and the order-up-to level are unique.

The stochastic multi-period inventory problem with two supply modes in 

Chapter 4 examined the optimal values of two order quantities placed with two 

suppliers, one fast and one slow, at the beginning of every period. We have 

shown that under reasonable conditions the form of the optimal order policy is 

characterized by two numbers: when the beginning inventory level is less than 

the smaller number, a fast order is placed to raise the inventory level to this 

number and a slow order is placed to raise the inventory position to the bigger 

number; when the beginning inventory level is between the two numbers, only a 

slow order is placed to raise the inventory position to the bigger number; when 

the beginning inventory level is higher than the bigger number, no order is 

placed.

5.2. Future Study

There are several limitations in this thesis. The models we discussed in 

Chapter 2 assumed that shortages not satisfied from on-hand inventory are 

accepted as backorders as far as they can be met from the delivery of the 

second order. The model we discussed in Chapter 3 assumed that shortages
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are always accepted as backorders. For these models, it would be interesting for 

us to explore the form of the optimal policy when shortages are lost-sales.

The fully dynamic model in Chapter 2 and the model in Chapter 3 

assumed that per unit ordering cost is non-decreasing as the time gets closer to 

last period. It is worthwhile to relax this assumption and explore the form of the 

optimal policy accordingly.

The focus for the models we examined in this thesis has been on the 

structure of the optimal ordering policy. Future research on these models may 

be focused on computational studies. It is worthwhile to compare the relative 

value of order flexibility represented in the three models in Chapter 2. It is 

worthwhile to develop algorithms for efficient computation of the optimal policy.

Another limitation of our models is that we account for inventory and 

backorder costs at the end of the period, while the costs may actually be incurred 

continuously in time. Our models may need modifications similar to those in Rudi 

et al. (2005).
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Appendix A. Proofs for Chapter 2 

A.1. Proof of Lemma 1.

1) Note that Btx (x,) is the expected sale in the newsvendor model with a 

beginning inventory level x ,. Thus Btx[xt ) is concave in xt . Similarly, B<{y,)  is 

concave in yt .

2) Note that GL+lT(yL+l) is the expected newsvendor cost with a beginning 

inventory level yL+x, composed of the expected cost for underage and overage at 

the end of period T . It follows that GL+l T [yL+,) is convex in y L+].

3) Expanding the recursive equation (2), we get

Si ( t  > Ti) = Bt (x,, yx) + £  E [b, ( x , -  % , y, -  4 ) ]
'=2 ...(19)

+ f  GL+hT(y] ~4u ) A l(^,l) ^ ul 

where E\B , (xx- 4 u_x,yx- 4 u_x) \  is the expectation of B, (x, - 4  M, yx - ^ M ) with 

respect to Then it follows, from the fact that Bt {xt,yt ) is separable in x, 

and yt , that g, (xx,yx) is separable in x, and y , . Similarly, it follows, from the fact 

that Bt (x,,^,) is convex in x ,, that g, (x,,^,) is convex in x ,. m

A.2. Proof of Lemma 2.

1) It can be seen that H l (xl ,IPl ) in (P1.1) is convex in x, for any IPt since 

g ^x ,,;;,) is convex in x ,. It can also be seen that //^XpX ,) is convex in x, by 

(19) and the fact that Bt (x,,x,) = 0. This results in that _/, (x ,) is piecewise 

convex in x, and that £,(x,) is convex in x, from their definitions.

dHl {XtJP,)2) At any breakpoint IP ‘ , since
dlP,

= 0, we have
jp̂ ip'
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£^',(x,) d H , (x,, /7j) dk, (x,)
dx, fix, t/x,

in viewing of
c/Ar, (x,)

dx, x̂ ip; fix,
+

5//J

3) By the separability in x, and IP, of H, (x,,IP,) from part 3) of Lemma 1 and by

d], IX, J r~ ~j
(1), '  is free of IP, and continuously increasing in x, over 0, IP"  . It is also

dx, L J

d jA xA  r \
true that v J is continuously increasing in x, over by the convexity of

dx, L ’

H , { x „ x , ) .  Thus ^ X|  ̂ is continuously increasing in x, over [0,co) since

behaves well at IP"  due to
dH,{x ,JP,)

SIP
=  0 .

ip,=ip"

dx,

A.3. Proof of Theorem 1.

By (P1.2) and (6), we have

Qo = afgmin{min{c0Qn + j , {Q 0),c0Q0 + k, (a)}}
which is equivalent to

0O* = arg min min {c0Q0 +_/,(&)}> min {cflg 0 + k, (Q0)} |

Without loss of generality, we can assume that Q**" > 0. Thus, Q” * minimizes 

c0Q0 +K  ( a ) ,  which is convex by Lemma 2 part 1). We also see, from parts 2)

and 3) of Lemma 2, that

dx.

dk, (x, j
dx,

<
di\ (x ,)

dx,

dk, (x, j

IP,"' dx, ip:"

and that (x,) and £,(x,) are equal at each breakpoint IP* from their definitions. 

This implies that Q ”  and Q*** fall in the same i n t e r v a l f ° r some /:
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c0jc, + j\ (x,) and c0x, + kx (x,) are minimized in the same interval; and, the solution 

at any breakpoint IP* other than Q** and Q™ can not be optimal. As a result, 

only c0g0*’* + kx (Q0***) and co0 o“  + j x (O,**) have t0 be compared to determine the 

initial order quantity. This leads to our conclusion. m

A.4. Proof of Theorem 2.

1) It is sufficient for us to consider only the case L > 0, A, = • • • = b , = 0, for which 

H x (xl,IPl ) can be written as

H, (x „ i p , ) = c, (IP, - x, )+ j [ Gw  (IP, - ) f u  (£u ) d t u

The convexity of H l (xl ,IP]) with respect to IPX follows directly by part 2) of 

Lemma 1.

2) Notice the condition L = T,bl =--- = bT_i =0,bT >0  implies that the backorder 

cost is effectively charged independent of when the backorders occur and that 

bT < cu since otherwise the decision maker will not accept backorders. Thus,

H l (x[,IPl ) can be written as below 

H , ( * „  lP,) = c, ( I P , - x , ) * b T £ ( ^ , - x , ) f T(4 ,T) d t , T + bT ^ ( I P , - x , ) f , T (f,.r )tf£,r 

+ c„ £, (4,r “ ( ( i t ) d ^ , + cd (IP, - 4, r ) f , j  ( 4 v ) d £ , ,

d2H  (x IP)
With a little algebra, it is easy to show th a t + C/- b T) /| T ( / / f ) .

Since c >bT,\\. follows that ^ > q Therefore H.(x ., IP)  is convex in
" dIP2 lV ' ] ’

IPX.

3) The backorder cost is effectively charged independent of when the backorders 

occur and that bL < c „. With a little algebra, H x (xx,IPx) can be expressed as
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H, (x,, IP, ) = c, (IP, - x , )  + bL^  (£u  -  x,) /  , (£u ) + bL (IP, -  x, ) £  , (£u ) d%, L

+ C„ J J ( £ , ,  - / / > ) / [ ,  ( ^ ) ^ , r  +  c„ f  - / / ^ ) A r  ( ^ r ) < r

With some more analysis, we have ^ ^d//>'2’ ^ ^  = A*.( Ipi) + (c„ + cj ) A r  ( f f i ) ■

f T(lP,)Recall that the monotone likelihood ratio property (MLRP) holds for —-I  over
f \ , L  (IP\)

[0,oo ). We see that — T~ ~ x\ is increasing in IP.  If ^ 4 ^ - < — ^ —  and
L ; A A ^ )  A A ° )

f  ( ^ h  '—"  f  \ t  \ I h
■ ) '  > — -— , then there exists an IP, such that ) ’ - — -— . In case
A i l 00) c»+c</ A i ( ^ )  c»+c"

^IJ ^  > ——— , IP. is defined as 0; in case ^>J f°°) < ——— , IP. is defined as
A i ( ° )  A  : W

oo. Therefore we have ^ ( x p A )  < 0 for q < j p < j p  a n c j ^  H \  { x \ ^ p \ )  > Q fo r
dip; dip;

andIP ,> IP , \  that is, H,(x , , IP , ) is concave-convex in IP, : concave on 0,IP, 

convex on [//?,<»). This leads to our conclusion.

4) To prove that H , ( x „ I P , ) is unimodal in IP,, it is sufficient to show that

3 ( x  ^
c, changes sign at most once over (-00,00) for 1< / < T .  We do it

recursively starting from t = L . With a little algebra, we can see that

C, ^ [ f L fe  K , .  +

c,+( l>i  ~ c . ) [  f LU L) d i L + I  ‘ dG— -Tj ' - L ^  d$,.
dyL

By introducing a variable u = y L , we have

CI + d S l ^ y ,yL  ̂ = £ M (^^Z) A ( a - u ) d u
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where M(u , L )  =
c^+bL-  cti I f  u < 0

dG (u) ■ It is easy to see that M ( u , L )  changes— j  I f w > 0
du

sign at most once over ( -0 0 ,0 0 )  in view that GL+lT is convex, d G L + i j ( U )

du =  ~ C u  -

dGr^,r (u) . . dg, (x , , y , )
lim —  ' =cd and c] +bL- c u < 0 .  As a result, c, + v ’  changes sign
»^co du " dyL

at most once over ( -0 0 ,0 0 )  with respect to yL, and

SyL
=  C , + b L - Cu ^ 0

yL =

finr 1 y j
Suppose c, + — ;+ '+”  l+u changes sign at most once and has a non-positive

dy<^

value of c, + 2  ̂&,• -c„ at j , +l = 0. For c, + v_ , we have
./=/+!

c, + 3 & ( W /) — C, +

M[u, t )  ■

£ V cBJ£/UK + jr:
>0 f , { y , ~ u)du where

c , + I > , - c „  If w < 0
j = t

r,+1(x, +w -y ,,v )

/U K

c,+ lfw > 0

It can be seen that M(u, t )  changes sign at most once over ( - go, 00) since

l ( x , + u - y „ v )
M (u , t ) <  0 for u<  0 and c,+-

dv
changes sign at most once

r) ( ^
over [0,oo) from to Therefore c, + changes sign at most once
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and c, +
ay,

= cl + ' £ i bJ - c i i < 0 .  By induction, the conclusion is
V-0 j =t

established.

5) To prove / / , ( x p /7j) has at most one local minimum and one local maximum

with respect to IP]t it is sufficient to show that c,+- changes sign at

most twice over (~a>,oo) for 1 < / < L . If c, + 'YJbj  - c u < 0, then the result is evident
j=i

L

by part 4) since PF2 includes PF2. Next we assume ct + ' £ b l - c u > 0. Define

/* = max it  < t  < L \c x + 'YJbj  - c u > o | . By part 4), c, + changes sign at

most once over ( -0 0 ,0 0 )  for t > t  . We next show that, for any /< /* ,

3 g ,(W /)
C, +

dy,
changes sign at most twice over ( - go, 0 0 ) . We do so recursively

starting from t = t . c ,+ — '—y — — =1 M \ u , t  ) f r \y r - u j d u  , where

c, + y  b . - cj «
j=t

c\ + '
y.+\ x . + u - y . , v )

dv

If w < 0

If w > 0
It can be seen that A7 («,/*)

changes sign at most twice over ( -0 0 ,0 0 )  since m (» ,/* )> 0  for u < 0, and

.+i( x . + u - y , , v )
c, +

dv
changes sign at most once over [0,oo) starting from
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dg. ( x . , y >)
non-positive. Therefore c, h— — L— — changes sign at most twice and has a

dy,

L

positive value of c, + ^ b j  - c u at y .  = 0 . For /* -1 , we have:
/ = ' *

c, +- - = [ x M ( u S  -1 ) f . _ \ y i. ^ - u ) d u  where

c, + y  b . - c  ifm < oJ ti
j=i -i

c,+
,,v)

dv
I f  w > 0

It can be seen that M (u , t * - l )  changes sign at most twice over ( -0 0 ,0 0 )  since

/ , x d g A x . + u - y . , v \
M{u, t  - l ) > 0  for u<  0, and - 1 ' '  ' ' 'c, + ■

dv
changes sign at most

twice over [0,oo) starting from Therefore C, + - changes sign at

most twice and has a positive value of c, + y  bj - c „ at y r ]  = 0 .  By induction, 

part 5) follows.™

A.5. Proof of Theorem 3.

1) Analogous to part 1) of Theorem 2, it is true that H t [ xt,1Pt) is convex in IPT, 

where

H ,  ( x „ I P , )  = c, ( I P , - x , ) + £ G,t l r  (IP, -  

Thus, a base-stock policy QT =max(/Pr* - j r r ,o) is the optimal ordering rule at the 

beginning of period x , where IP*  > 0 is the value of IPT that attains the minimum 

of H t( xt,IPt) over [0,oo), leading to an expression for hT(xT) below:
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h U u \ H p ” ,pd  i f x ' < i p ;
| / / r ( x r , x r ) i f  x t > i p ;

The convexity of hT (xr) is implied by the convexity of H r (xr,/Pr*) and H r (xr,xr) 
with respect to xr (analogous to H t (x x,IPx) and H x(x x,xx) ,  respectively), and by

the inequality  ̂> o  for i p  > I P * .
dIPt

To show that t c „ ( Q 0) is convex in Q0, it is sufficient to show that fy(x,) is 

convex in x ,. In view of the recursive equation (7), it is then sufficient to show

that h2(x2) is convex in x2 since bx j”(<̂  -  xx) f x(%x)d%x is convex in x,, where

x2 =x, -£ , ■ The rationale for this is that a convolution transformation of a convex 

function is a convex function and a summation of two convex functions is a 

convex function. Following the same logic, it is sufficient to show that hT(xr ) is 

convex in xr , which we have proved above.

2) Analogous to part 2) of Theorem 2 it is true that H r (xT,IPT) is convex in IPT, 

where

r i : i x : j p : ) - c  ( ip: ,■ ) /,, i - a . ) / : ,

The proof for the convexity of t c u (Q0) in Q0 is similar to the proof of part 1) of 

Theorem 3 above.

3) With a little algebra, H t (xt,IPt) can be expressed as

H t ( xt, IPT) = cT ( I P - x r ) + brlt_, £  ( £  r,i_, - xr ) / r r,i_, (X,r, t_, )</£,,,

+  b r +L- l  i I P r ~ X r )  [ p/ r , r , L - \  (  £ , r  + i - l  ) '^ r . r +/.->

+ C» £  (Sr,T-IPr)fr,T(^T)dSr,T+Cd f  ( £  ,r -  IP, ) f r,  ( £ ,r ) d ^
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Analogous to part 3) of Theorem 2 it can be seen that H r (xr ,IPr ) is concave- 

convex in IPT.

4) To prove that H T(xT,IPT) is unimodal in IP ,  it is sufficient to show that

8 (x )
c + change sign at most once over ( -0 0 ,0 0 )  for t < ( < t  + L - 1 .  It can

be done similar to the proof of Theorem 2 part 4). The proof for convexity of 

t c „  (Q0) in Q0 is similar to the proof of part 1) of Theorem 3 above.

5) To prove that H r (xr,IPr ) has at most one local minimum and one local

8& {x v i
maximum with respect to I P , it is sufficient to show that cr + — ' v ’ ’  changes

sign at most twice over ( -0 0 ,0 0 )  for t  < t  < r  + L - 1. It can be done similar to how it 

was done in the proof of Theorem 2 part 5). m

A.6 . Proof of Theorem 4.

1) The outline for the proof is: we first show that for big-enough beginning 

inventory level x( , j t (x,) > kt ( x , ) ; then we show that j , ( x,) and k,(xt ) cross only

once so that an (s,S) policy is the optimal rule for whether to place the second 

order and how much when ordering at the beginning of period t. By the definition 

of H, (x,,IP,) and L  = 0 , it can be seen that

(1P,-X,) + C. +c„ f

It can be verified that for any t, H t {xt,IPt ) is convex in IP, with limits 

lim H  (x , IP )  =00 and lim H. (x . , IP )=co. ip* is the unique minimizer of
IP, - * c o  v  '  JP! - > - 0 0  v  '

H t {x„IPt) as a function of IP,. When x, > IP*, if an order is forced to be placed 

then the optimal order size is zero by the convexity of H,(x,,IP, ) with respect to 

/^ .T he re fo re  j , ( x , )> k , ( x t ) holds true when x,>IP*  since the k,(x,) solution
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still keeps an order opportunity, while starting with the same inventory level as 

the j , ( x t ) solution.

We next focus on the case when x, < I P * . From (11) and the expression

for H l (xt ,IPl ) above, we get

Thus, to compare j , ( x t ) and £ ,(* ,), it is sufficient to compare 0, and

K t (x,) = k, (x,) + ctxt , where

® , =c, ip; + c„ Q ^ r - i p ^ f . j d ^ d i r + c ^ ' '  ( i p ; - e ,  ,r ) x . r ( f , r ) < r . 

(Note for x, > IP * , K t (x,) < 0 ,.) The question that needs to be answered next is: 

Given that we are at the beginning of a period t and the inventory level x, < IP* , 

for what values of x, is it optimal to place an order? We answer this question in a 

recursive manner by starting from t = T .

Case t = T

It is easy to see that kT{xT) = H T{xT,xT) , thus K T(xT) is convex and minimized 

at IPT* , and ®T < K T(xT) for xT <IPT*. Therefore the optimal policy at the 

beginning of period T is: If xT < IPT* then it is optimal to raise the inventory level 

to I P * . As a result, hj, (xr ) is convex in xT .

Before further discussion we state a lemma which will be used later.

Lemma 7. K ] (x,)< 0  for x, <0 and t < T - 1.

Proof “ x, < 0 ” implies that there must be an order placement in one of the 

remaining T - t  periods by the backordering assumption and the assumption
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cu >max{c1,c2, -",c7. } . Suppose it is placed in period tx ( tx> t ) with a unit price of 

c, . Then we have
't

Knowing that K , (//)* )< © ,, Lemma 7 suggests that 0, and Kt (xt ) cross at least 

once over (note here 0, is a constant function with respect to x,). In

what follows we show that they cross once.

Case t = T - \

To show that ©r_, and K T_x(xr_x) cross once over ( - 0 0 ,IPT_*^, it is sufficient to 

show that K T_X (xr_,) is convex in xr_,. Notice that

K t _j ( x T _ x ) — CT_xy  + b TX ( ^T - ]  ~  x t - )  )./r-1 ( £ r - 1) jg b r  ( x r-i — £ r - 1 ) f r - i  ( £ r - i  ) d<^ r - I

The convexity of K T_X (xr ,) follows because each term in the R.H.S. is convex in

To show that 0, and Kt (xt ) cross once for ail t < T - 2, we show that 

K,[x t ) is unimodal for t < T - 2. Notice that

K (*,) = c, - b< [  f , + f  {x, - £ , ) / ,  (£)</£

where
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To prove that K,{x t ) is unimodal, it is sufficient to show that Kt (xt ) changes 

sign once over ( - 00,00). It is then sufficient to show that M t (u ) changes sign 

once over ( - 00,00) since f t is a PF2 density. We first discuss the special case 

t - T  - 2 \  Then we discuss the general case by induction.

Case t = T -  2

We follow two steps to prove that M T_2 ( j )  changes sign once over ( - 00,00).

Step 1: Claim M T_2 (>>) is negative when y  < 0. In fact, if y  < 0, we have

M T - 2  ( t )
cT-2 bT2 + j f_] (.y) if sT_x >0
cT_2 - b T_2 + j T_x (jy) if 5'7._i < 0 & y  < s 

c t ~ 2 ~  b T - 2  +  k T - \  { y )  i f ^ r - i  -  0 &  y  -  s :

T -1

t -  1

if sT_x > 0

CT -2  P t - 2  — CT~\ i f  S T - \  — 0 &  y  < S T-\

ct - 2 Pt~2 ct-\ + K r _x (^) i f  sT_x < 0 &  y >  sT_x

<0

where ^r_, is the order-triggering point in period T - 1.

Step 2 : M t_2 ( j )  changes sign at most once over (0,oo) from to “+”.

Without loss of generality, we can only discuss the case sT > 0 since the 

opposite case can be discussed similarly. Notice that

, f cT_2—cT_x i f  y  < sT_x
CT -2  T-! ( t )  ] „  ' / \  -n ^\cT_2 cT x+ K tx (y) if y  > sT_x 

cT_2+hr- \ { y )  's negative if y < s T_x \ For y > s T_x, cT_2+hT_'x (_y) increases to a 

positive value of cr„2 +cd as y  approaches co by the convexity of K r_x (_y), which 

follows from the convexity of hT(xT). Therefore cT_2 + hT ' ( y )  changes sign at 

most once as y  traverses from 0 to 0 0 .

Similarly, we can show that cT_3 - c T_2 + M T_2 ( y )  changes sign once over ( - 00,00) 

from to “+”.
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C ase  General t

Analogous to the case t = T -  2, we follow two steps to show that M,  (y ) changes 

signs once.

Step 1: Claim M t (y )  is negative when y < 0 .  A logic similar to that for case 

t  = T - 2 can be applied.

Step 2: M t (_y) changes sign at most once over ( 0,qo ) from to “+”.

Without loss of generality, we can only discuss the case s,+l > 0 , since the 

opposite case can be discussed similarly. We will discuss the sign of M t (_y) for 

different categories of y  .

For 0< y < s l+i, M l ( y )  = c ,+ h t+i ( y )  = ct + j l+i ( y )  = cl - c n i < 0 . For sl+] < y

M,  (^) = c, + hl+’ ( y )  = c, + k,+[ (y )

= c, - c ;+, + ^ ,+i '( j )

= £ ( c ' “ c '+i +M'+>(w)).^  i { y ~ u) du

Since c, - c ,+1 + M t+X{u)  changes sign once over ( - 00,00), M , ( y )  changes sign at 

most once over [s,+1,°o). In particular, if it does change sign once then the sign 

changes from negative to positive; Otherwise the sign remains positive. For 

either case, M, ( y )  changes sign at most once over (0,oo).

To summarize, for general t ,  we show that M , { y )  changes sign once from 

negative to positive as y  traverses from -0 0  to 0 0 . Similarly, we can show that 

changes sign once over ( -0 0 ,  go)  from to 

By induction, we have shown that K,(x t ) is unimodal for t < T - 2. Therefore 

there exists a Unique xt =st < lP '  such that Kt (xt ) intersects with 0 ,, i.e., an 

(s,S)  policy with s = s,,S = IP'  is optimal.
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2) Since L > 0,bt =--- = bT_i = 0,bT > 0, period T - L  + \ is the last period when an 

order can be placed. Moreover, we can see that H t (x„lP t ) has an expression 

below

H, {x,,IP,) =

C, {IP, - x,) +  bT J  ' {%tJ - x , ) f , j  {4,J)d%, +bT £  IP , f j  (4,J)d%,
t = T - L  + \

kt {xt ) can be recursively expressed as £( ( x , ) = £

t < T - L  + 1, and expressed as k,{xt ) = H t {xt,xt ) for t = T - L  + 1. Then the

approach in the proof for part 1) of Theorem 4 can be applied to establish the 

conclusion. m

A.7. Proof of Theorem 5.

It is sufficient to show that TCW (Q0) is unimodal. Since TCm (Q0) has a negative 

slope Cq — Cf for Q0<sn it remains to show that TCm(Q0) is unimodal over 

( ^ , 00). This is true since TCm (0 O) , with an expression below

TCm {Q0) = c0Qq + b{ £  (£ -  0 O)/, (#, ]d ^  + [ h 2 (0O -  £)./; &  K  

has a structure similar to &,(*,), which we have shown is unimodal. m
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Appendix B. Omitted Proofs in Chapter 3

B.1. Proof of Theorem 6

Recall the definition of £>,(r,y). We have

D'i ( z , y )  = cT- p ^ f r (%)d% + JT V [ { r - \ , y - ^ ) f T{ ^ ) d ^

-  J° M { x , u )  f \ y - u ) d u

where

M ( r  u\ = \ C^ ~ P + V̂ T~ l,U  ̂ i f W - °
|  c ( r )  + F, ( r - l ,w )  i f  u >  0

To prove that £>,(r,y) is unimodal, it is sufficient to show that £>, ( r , j )  changes

sign once over (-o o ,c o ) . It is then sufficient to show that M ( r , y )  changes sign

once over ( - 00, 00). Before our discussion of these cases, we first state a lemma

which will be used later.

Lemma 8 . £>,'(7 ,7 ) <0 for y < 0  and t > 2 .

Proof “ >><0 and demand greater than zero” implies that there must be an order 

placement in one of the remaining r - 1  periods by the backordering assumption 

and the assumption /?, > cr  Suppose it is placed at time T - ^ + l  (r, < r )  with 

unit price of c . Then we have

£>,'(r , y )  = cT - p f t (g)d% + ^ V H r - \ , y - % ) f T(Z)dZ

= Cr ~ P + m

= CI - ( T - T l ) p - C ri <0

As in the proof of Theorem 4, we can prove

1) M ( t , u ) changes sign once over ( - go, go)  from to

2) cr+l - c T + M { t , u )  changes sign once over ( - 00,00) from to “+”.
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Therefore Dx{ r ,y )  changes sign once and Dx{r ,y )  is unimodal. Theorefore we 

can claim that there exists a unique y = y* ( t )  < IP" ( t )  such that £>,( r ,y )  

intersects with 0 ( r ) ,  i.e., an (^S 1) policy with s = y* ( t ) ,S  = IP* ( t )  is optimal for 

t . The unimodality of Vx(r,y) is also seen from our discussion above. This 

completes our proof for Theorem 6 . m

B.2. Proof of Theorem 7

We show that there exists y = yk ( t )  < IPk* ( t ) such that £>*(7 ,7 ) = ©,,. ( r )  at 

yk { r ) ,  and that Dk{ r ,y )  stays below ©t ( r )  for y e ( y / ( r ) , /P k, (r)') and stays 

above © *(r)  for y e ( -o o ,^ * ( r ) ) .  The existence of yk* ( t )  where Dk( r ,y )  and 

0 * ( r )  intersect follows from the following lemma.

Lemma 9.

1) £>i '(z -,j)< 0  for ^ < 0  and t >  2.

2) lim Dk(r ,y )  = co; lim£>t (z,y)  = cr .
V—>—oo ^—>00

3) Dk[T ,IP ' ( r ) ) < © k {z) .

Proof The proof can be done, similar to the proofs for Lemma 3, Lemma 1 and 

Lemma 2. H

To show that £>k{ r , y ) stays below 0 t ( r )  for y e { y *  (r) ,IPk (t )} , it is sufficient to 

show that Dk{ r ,y )  is unimodal in y . Similar to £>(r,y) , we have

Dk i T’ y) = f l M k iT’ u) f r { y - u) du
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c -  v + V, if u < 0 . . , .
,. . . It is then sufficient to show that

cT + Vk ( r - l , « )  i f w > 0

M k (t,u) changes sign once.

In what follows, we first discuss three special cases: t  <k,v = k + \,k + 2 \ then a 

similar discussion can be applied to the general case.

Case r < k

In this case, the number of order opportunities is greater than or equal to the 

number of periods. Without loss of generality, we only discuss the case t  = k .  

That is, the decision maker has an order opportunity at the beginning of each 

period. Then this becomes one of the traditional r-period, stochastic inventory 

problems. It can be seen that Dk(k,y)  is convex in y . Therefore, a base-stock 

policy is optimal for any remaining period. That is, for r  = k there exists a unique 

positive real number, IP* ( t )  , such that if the inventory level is less than IP* ( t )  ,

then an order is placed to raise inventory level up to IP* ( r ) ; otherwise no order 

is placed.

where M k(r,u) = -

Case t  =  k  + \

We present Lemma 10 below to show that

M A k  + \ , y ) 4 C“ ' ~ P + V: (k^ ] ' f y - °
' C„l +V, (k ,y )  i f y > 0

changes sign once.

Lemma 10.

1) M k (k + \ ,y)  changes sign once over ( - 0 0 , 0 0 ) from to “+”.

2) ck+2- c k+[ + M k (k + \ ,y)  changes sign once over ( - 0 0 ,0 0 ) from to “+”.
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P roo f 1) We need two steps to prove that M k(k + l ,y)  changes sign once over

Step 1: Claim M k(k + l , y ) is negative when y <  0. Similar to the case involving 

general t  in the proof for Theorem 4, we can see that M k(k + \ ,y)  is 

ck+]- p - c k+Dk(k,y)  if yk ( k ) < 0  and y > y k {k),  and is ck+]- p - c k otherwise. 

For either case M t (k + l ,y)  is negative.

Step 2: M k (k + \ , y ) changes sign at most once over ( 0,oo) from to “+”.

Without loss of generality, we only need to discuss the case yk (k ) > 0 since the 

opposite case can be discussed similarly. Notice that

ck+1 + Vk ' ( ^ t )  is negative if y  < y k; ( k ) ;  For y > y k* ( k ) ,  ck+l + Vk ( k , y )  increases to 

a positive value of ck+l as y  approaches oo by the convexity of D k( k , y ) .  

Therefore ck+i +Vk ( k , y )  changes sign at most once as y  traverses from 0 to oo. 

Therefore, the claim that M k {k  + \ , y )  changes sign once over (-00 ,00) from to

“+” follows from the results of step 1 and step 2.

2) It follows by a similar logic. m

By Lemma 10, we can claim that D k (k  + \ , y )  changes sign once and that 

D k(k + \ , y )  is unimodal. There exists a unique y  = yk (k + \ ) < I P k (k + \) such that 

D k[k  + \ , y )  intersects with 0 *(£  + l)  i.e., an (5 ,5 ) policy with 

5  = .y /(£  + l),S' = / i^ ( £ - f l )  is optimal for r  = k + 1.

Case r  = k + 2
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We will prove that an (5 ,5 ) policy is optimal for this case by showing that 

Dk{k + 2,y) is unimodal. It is sufficient to show that Dk(k + 2,y) changes sign

ĉk+2- p +vk { k + ^ y )  i f y ^ oonce. We achieve it by proving M k ('k + 2,y) = -
, ck+i + vk { k+x>y) i f  ^  > 0  

changes sign once over ( -0 0 ,0 0 )  through two steps below.

Step 1: Claim M k(k + 2,y)  is negative when y < 0 . This can be done analogous 

to the case of general r  in the proof for Theorem 4.

Step 2: M k (k + 2,y)  changes sign at most once over (0,oo) from to “+”.

Without loss of generality, we only need to discuss the case (A: +1) > 0 since 

the opposite case can be discussed similarly. We proceed by discussing the 

sign of M k(k + 2,y)  for different categories of ,y(>0). For 0 < ^ <

M k (k + 2,y) = ck+2 + Ok (k + \ ,y)  -  ck+2 - q +, < 0 .

For y > y k {k + 1)

M k (k + 2,y) = ck+2+ D k (k  + \ ,y)

= ck+2 ~ck+l +Dk'(k + \ ,y )

i ck+2~ck+ 1 + M k(k + l ’ u)) fk+\ { y - u) du

\ [c*., - p  + Vk (k .u )  i f w< 0
where - c , +1 + M k (k  + \ ,u)  = \  ̂ ■ Note the fact that

[ ck+2 + K (k’ u) i f  u >0

ck+2- c k+i+ M k(k  + \,u) changes sign once over (-00,00) from to “+” (by 

induction) implies that (ck+2 - c t+1 + M k (k  + l ,u ) ) f k+] (y - u ) d u , as a function of 7  , 

changes sign once over (-00,00) from to “+”. As a result M k (k  + 2,y) changes 

sign at most once over ( V ( *  + 1) ,00). In particular, if it does change sign once 

then the sign must change from to otherwise the sign stays
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To summarize for the case z = k + 2 ,  we show that M k (k + 2 ,y )  changes sign 

once from negative to positive as y  traverses from -o o  to o o . We form it in the 

following lemma.

Lemma 11.

1) M k (k  + 2 ,y )  changes sign once over ( - 0 0 ,0 0 ) from to

2) ck+3 - c k+1 + M k {k + 2 ,y )  changes sign once over ( - c o ,o o )  from to

Thus, Dk (k  + 2 ,y )  changes sign once and M k (k  + 2 ,y ) is unimodal. Now we 

claim that there exists a unique y  = y k* (k  + 2 ) < IP k* (k  + 2) such that D k(k + 2 ,y)  

intersects with & k (k  + 2) at y  = yk (k  + 2 ), i.e., an (^S 1) policy with

s = y k (k  + 2 ) ,S = IPk (k + 2) is optimal.

Applying similar logic to the proof for the general case in the single order 

opportunity case, we can show that for z > k  + \,  we have 1) D k[ z , y )  is unimodal

and D k ( r , y )  changes sign once from negative to positive as y  traverse from -oo

to oo; 2) There exists a unique y *  ( z ) < IP k (r )  such that

3) cT+l — cr + M k(z ,u )  changes sign once over ( - 00,00).

The unimodality of Vk (z,y) is seen from our discussion above. This completes 

our proof for Theorem 7.m

for y < y t *(z )  

for y  > y k {z)
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B.3. Time-Variant Backorder Cost and Holding Cost

In our discussion in section 3, we assume hT= 0  and pT = p  for simplicity of

exposition. We relax these two assumptions to include explicitly time-variant 

backorder and holding cost. In fact, we only need to replace the expressions for 

some functions defined above. After it, a similar approach can be applied.

V0( r ,y )  is replaced by V0( r ,y )  defined below

V0(T,y) = (pT+hT) ^ ( % - y ) f T(Z)d£ + hT(y - / . iT)+ V0( t - \ , y - £ ) f T(Z)d%

Dx(r ,y )  is replaced by D i ( r , y ) defined below

A  (r, y ) = (pr + hr ) JJ(£ -  y) f T (g) + hT ( y - pr ) + J[ V, ( t  - 1, y -  4) f T (£) d£

Dx(r ,y )  is replaced by D \( r ,y )  defined below

D\(z,y )  = D\(T,y) + cTy

where cr = cr + hT and pT= pT+hT.

Dk[ r , y )  is replaced by Dk(r ,y )  defined below

Dk{T,y) = cTy + pT^ ( Z - y ) f t { € ) d Z + ^ V k( T - \ , y - % ) f T{Z)d%- hTpT 

Thus, these pairs of functions, D i ( r , y )  and Dt( r ,y ) ,  V(T,x)  and V(T,x),

D k ( r ,y )  and Dk( r , y ) , have similar expressions except a constant.

After replacing the functions defined above, all the conclusions in section 3 and 

section 4 are applicable provided that cT is nonincreasing in r . (In case there is

a unit salvage value v at the end of period T , then /?, is hx minus v.) This 

completes our discussion for explicit inclusion of the time-variant holding and 

shortage cost.
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B.4. Explicit Inclusion of a Fixed Order Cost

In this appendix, we show that, after explicitly incorporating a fixed order cost, K , 

into the purchase cost function, a time-varying (5 , S) policy is still optimal.

We first discuss the one-order-opportunity case. Analogous to section3, it can be 

seen that IP* ( t ) is the optimal inventory position when an order is placed. Next,

we show that it is not optimal to place an order when the inventory level is higher 

than a certain number. To do so, we define

ip* (r)  = arg{0 < y  < IP * ( r ) : cr^ + V0 ( r , y )  = K  + cr/P* (r )  + V0 (r, IP* (r))}

Then, ip* ( t ) is well defined by the convexity of cry  + V0(T ,y )  with respect to y  . 

Now we have the following Lemma 3’, instead of Lemma 3.

Lemma 3’ . Assume we are at time T - t  + 1 and the inventory level is y . If 

y  > ip* ( r ) , then it is optimal not to place an order.

Proof Cost for the last t periods if we do not place an order is D] ( r , y ) .  Cost if 

we place an order is

f K  + 0 { ( r , y , y )  i f  > /P* ( r )

[ K  + O ^ t^ J P *  ( t ))  i f  y < I P * ( r )

> O ] (T ,y ,y )  = V0(T,y)

Then the proof follows from the observation that V, ( T - l , y ) < V 0( r - l , y ) . m

To summarize, there is a unique pair of IP* ( t ) and ip* ( t ) for each r .  If

y > i p * ( r ) ,  then it is optimal not to place an order. If y < i p * (r) then it may be 

optimal to place an order. If an order is placed then it is optimal to raise the 

inventory level to IP* ( t )  with the corresponding cost

° \  ( r ’T) = K + Ox ( r ,y , IP *  (r)) = K  + cTIP * (r) + V0 (r , IP*  (r)) -  cTy .
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Thus, we have

jmin{<9, ( r ,>>),£), ( ^ j ) }  i f y < y / ( r )

We next focus on the case when 7  < ip" ( r ) . To compare 0 , ( r , 7 ) and D ^ ( r , y ) ,  it 

is sufficient to compare K + cTIP* { t )  + V0( t,IP* ( r ) )  and £>,(r,.y). Let

0 ( r )  =  K  + c ( t ) I P * ( r )  +  r 0 (r,/P* ( r) )  

then it is optimal to place an order if 0 ( r )

The question that needs to be answered next is: Given that we are at time

T — t  + 1 and inventory level y <  ip* ( r )  , for what values of y  is it optimal to place

an order? This can be answered similar to the case without fixed order cost if 

there is only one order opportunity. In particular, we can show that a time-varying 

(5 , 5 ) policy is optimal for each period.

We next discuss the multi-order-opportunity case. Similarly, we can define

W  ( r ) -  arg{*> ^ IPk ( 0 |°k ~ K  + Ok (r ,0 ,lPk ( r ) )  J

Then, ipk* ( r )  is well defined by the unimodality of Ok (r ,0 , ip )  with respect to ip.  

Now we have the following Lemma 6’, instead of Lemma 6.

Lemma 6 ’. Assume we are at time J - r  + 1 and the inventory level is y .  If

y  > ipk ( r ) , then it is optimal not to place an order.

Proof Cost for the last r  periods if we do not place an order is D k ( r , y ) .  Cost if 

we place an order is not less than Ok [ r , y , y ) , analogous to Lemma 3. The proof 

follows from the observation that Vk ( r - 1  , y )  < Vk_t ( r - l , y )  .H 

In what follows, we only give the discussion for the case: r  = 2(<  k )  since all the 

other cases can be done by induction similar to the case without a fixed order
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cost.

Lemma 12.

1) M,  (2,w) = <T2 P + Vkr y  °  changes sign once over ( - 00,00) from
^  > 1 c2+Vk ( l ,y)  i f  7 >  0 K

to

2 ) c3+Vk ( l , y )  changes sign at most once over ( 0,co) from to

Proof 1) Since it can be shown, analogous to section 3, that c2 - p  + Vk ( \ , y ) < 0  

for y <  0, it is sufficient to show that c2 + Vk (1, _y) changes sign at most once over 

( 0,oo) . Notice that

[c2- c , + D k { \ , y )  if y > y k (l)

C2 + Vk { ^ y )  is negative if y < y * { \ )  \ for y > y k* ( l ) ,  c2 + Vk ( \ , y )  increases to a 

positive value of c2 as y  approaches co by the convexity of D k{ \ , y ) .  Therefore 

c2 + Vk ( l , y )  changes sign at most once as y  traverses from 0 to oo. This leads

to our conclusion.

2) It follows by a similar logic. m

By Lemma 12, we can claim that D k (2 ,y )  changes sign once. Thus, Dk{2 ,y )  is 

unimodal, and there exists a unique y  = y k { 2) < IPk {2) such that Dk(2 ,y )  

intersects with © *(2 ), i.e.,: an policy with s = y *  (2 ),5  = IP* (2) is optimal

for t  = 2 .

Similar discussion can be provided for other values of z . This completes our 

discussion for explicit inclusion of a fixed ordering cost.
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B.5. Explicit Inclusion of a Positve Delivery Leadtime

In this appendix, we show that, if there is a positive delivery leadtime L , it can be 

transformed into a case where the delivery leadtime is zero after some

preliminary work (Clark and Scarf, 1960).

Let V\ { r ,y ,xx,---,xL_x') denote the minimum expected cost over the last r  periods 

if there is 1 order opportunity left, we have y  units of inventory level at the 

beginning and xt (1 < / < L - l )  units of on-transit inventory that will be delivered at 

time T - r  + i + l .  Let 0\ { r ,y ,xx,---,xL _,) denote the minimum expected cost if an 

order is placed at time T - t  + 1. Let D\[T,y,x^---,xL_l ) denote the minimum

expected cost if no order is placed. Then the ordering decision problem is formed

as

'  „  , ... (P4.5)
m injOi (T,y,x],---,xL̂ ) ,D \ (T ,y ,x i ,---,xL_x)} fo rL < t <T

It is optimal not to place an order if Z)i < 0\ (r ,y,

For a given r ,  to compare D\(z ,y ,xx,---,xL_x) and 0\ (r, y,x^,---,xl , we 

show that we only need to compare two one-variable functions Z), { r ,y )  and

L ~ \

Ox ( r ,y )  obtained through a transformation below, where y = y  + is the
I

inventory position before the ordering decision. To do so, it is convenient for us 

to append the following definitions and notation.

Define Lr (y)  = p ^ { ^ - y ) f T(^ )d ^  for any y  in period T - t + 1. Then Lr {y)  is

the expected backorder cost in period T ~ r  + 1.

Define

L

■C{r,y,xi , — ,xL̂ )=LT_T+x{y) + Y , E
V j = 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

97

is the demand in periods T - t + \ through T - r  + i .  £ ( r , y , x ],---,xL_l) is the

expected backorder cost in periods T - t  + l through T - t + L .

Define

~ f  L~'
vn

= Lr{y)+ £ Vi r - \ , y  + Xi- ^ , x 2, - - - , I P - y - £ x , ,0  f r ( Z ) dZ
L-\  \

K
l ~\ y

T,y,xl,---,xL_[, I P ~ y - ^ jxj is the expected cost over the last t  periods. It i
i y

is

easy to see that

K
L-1 ^

T,y,x„---,xL_], I P - y ~ ' £ ixi
i y

=  L r (> ’ ) + f F0 r - l , > ;  +  X i - £ , X 2, - - - , / . P - j > - £ x ; ,0 f r (4 ) d£
v i y

= £ ( r , y , x }, — ,xL_l ) + E [ v 0( T - L , I P - 4 T'L, 0,---,0,0)

= £ ( t , y, x,,• • •,Xu ) + V0 ( t , I P )

where

V,(T,lP) = E [ v „ ( t - L J P - l ; rL,0, ■■,0,0)]

= E[L,_L{ l P - l j ) ]  + E \ j v t ( T - L - l , I P - l ± - 4 , 0 , . . . , 0 , 0 ) / , . , ( ^ ) ^

= p [ £ , l„ - lP)fM  ( £ ) ' +  f 'K (r -1, IP - ) / , ! . ,  (£ K  

Therefore, V0( t , IP ) is the expected cost for the last r -Z , periods, viewed at time

T - t  +  l .

Define

di(r,>5;xp ---,x£_1,/P ) = c ( r ) ( /P - 7 ) + Fo(r,j),x l ,---,x/_l , / />- j )

Then,

O i( r , j ,x l ,---,xi „1,/P ) = c ( r ) ( 7 P - j)  + X ( r , 7 ,x1,---,x/_,) + ^ )( r , / / J)

-  £ ( t , y , x {,--- ,xL_t ) + 0 ] ( t , y , l P )
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w h e r e  Ox{r ,y, lP)  = c(t ){ IP -  y)  + V0(T, IP) . T h i s  l e a d s  t o

a ( T , y , x l , - , x L_l ) = r ^ { a ( T , y , x l , - , x L_l , IP)}

=  Ol (T , y )  + £ ( T , y , x l , — , x L-1) 

w h e r e  0 } ( r ,y)  ( r ,y, IP)}  i s  t h e  m i n i m u m  e x p e c t e d  c o s t  f o r  t h e  l a s t  t - L

p e r i o d s  i f  w e  p l a c e  a n  o r d e r  a t  t i m e  T - t + 1 ,  v i e w e d  a t  t i m e  T - r  + 1 .

L e t  Vi(r ,y)  b e  t h e  m i n i m u m  e x p e c t e d  c o s t  f o r  t h e  l a s t  t - L  p e r i o d s ,  v i e w e d  a t  

t i m e  r - r  +  1 . T h e n ,  w e  c a n  g e t

Dx{r ,y ,x „  —

= Lr { y ) + [l Vx( r - \ , y  + x] - % , x2, — , xL_x,0 ) f T( 4 ) d £
. . . ( 21)

=  L r { y ) +  Jf ( ^ ( r -L j  + x, - £ , x 2 , - - - , x l _ i , 0 )  +  V i ( r - l , y - £ ) ' ) f r ( £ ) d < ! ;

= £ ( T , y , x I , — , xL_l ) + D t (T,y)

where Dl (T,y) = p f p( ^ L+1- J P ) f r^ ( ^ + [ v i ( r - l , y - ^ ) f r ( ^  is the

minimum expected cost for the last t - L  periods if we do not place an order at 

time T - t + 1 , viewed at time T - t + 1.

By (20), (21) and (P4.5), we have

v\ {T,y) = V\ (T,y,x],---,xL̂ ) - £ ( T , y , x ],---,xL_]) = mm{Ol (r, y ) , D l (r,y)}

For the case we have k  order opportunities left for the last t  periods, we define

dk(T,y , x],---,xL_],IP) = c ( T ) ( l P - y )  + £ ( r , y , x ],---,xL_t) + Vll_] (t ,1P)

= £ ( T , y , x l,---,xL_[) + Ok(T,y,IP)

where Ok [T,y,IP) = c ( T ) ( l P - y )  + Vk_] ( r , I P ) . Therefore, we can get

Ok = m injo* (r,_y,xl ,---,xi _1, / />)J ^

= Ok ( T , y )  + £ ( T , y , x , , - - - , x L„ t ) 

where Ok (r ,y)  = min [Ok (T,y,IP) } . Let Vk ( r , y)  be the minimum expected cost for 

the last t - L  periods, viewed at time T - t  + 1. Then, we can get
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Dk(T,y,X],---,xL_,)

= Lr {y )+  f  ̂ . ( r - 1 ,  j  + X 1 ) f T(%)d%

=M>0+ f  { £ { ? - \ y + ^ -  %,x2,---,xL_x,ti)+vk{t - \ , y  -  £)) f x{£)d%

= X(r, j) ,x],---,xi_l) + £>,(r,j;)

where D* {z ,y ) = /> £ ( £ , t+I - I P ) f r,M (^+IK ,itI + f  Vt { r - l  ,y ~ Z ) f T .

Similarly, we have

^ ( r j )  = ^ ( r ’ M . - )^ l ) - X ( r , j , x „ - , x H ) =  ra in jO i ( r j ) , D t ( r , y ) )  .

The discussion above shows that, to study the case with positive leadtime, we 

can construct a transformation so that we only need to study the after

transformation case, making use of the techniques for the zero-leadtime case.
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Appendix C. Omitted Proofs in Chapter 4

C.1. Proof of Theorem 8 .

1) Recall that

Differentiating it with respect to IP  yields

SV,(z ,z, IP)

dIP

> « . >«,

= c,,„ + £  P,x  fa -  ) d$r  + [ dR' ^ Z J ^ l r  f a - K

= L M ' ( U) A r ( I P ~ U) du

where

M , { u )

dR. (u )

c- + p '> -+ ~ i r  I f " <0
dRt («)

C' " + ’ du
If w > 0

It can be seen that M,  (u ) changes sign once over ( - 00, 00) . In fact, for u < 0, we 

have

The second equality is true by the induction assumption that Vt+’ (z) = -c t_w, for 

z < 0 . It implies that M ( u )  = c, + p + dR,(uY c + p  _ „ _ c <0 by the
—  • t \  /  t , n  r  l ' n r  r t  t - ' > e J

assumption that no-backordering motivation exists. For u > 0 , cln +
dR, (w)

du
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changes sign at most once by the convexity of R, (u ). Therefore, M,  (u ) changes 

sign once as u traverses over ( - 00,00). 

dVt {z ,z , IP )
As a result,

dIP
changes sign once over ( - 00,00) with respect to IP .

Therefore, Vt ( z , z , IP ) is unimodal in IP  and the minimum is achieved at

ip ; { >  0 ).

2) The convexity of Vt ( z , z , IP ) with respect to z is implied by the fact it is a

combination of two convex functions with respect to z . It is easy to see that its 

first order derivative is

dV,{z,z,IP)

dz
Cr,-Ct,n+ h r ~(PiA + h A )JXf iA (£  ) d ^  ■

Setting the derivative equal to 0 implies (^ ) ^  1 , and
p , -+h
r  t j  I./.

therefore z* > 0 .■

C.2. Proof of Theorem 9.

Recall that Vt (z) has an expression

V , ( z , z , \ i p ; )  If z<z,* 

v , { z ) = \ v t ( z , z j p ; )  i f z; < z < ip ;  

fj(z_,z,z) I f  z_> IP*

Taking derivatives for Vt (z) with respect to z , we have

dV,U)
dz

-c.t ,e

~Ct,H +
d L , ( z jp ; )

dz

~ C t ,n  +

dL, ( z, IP  )  ̂ dVt { z , z , I P )

dz dIP

If z_ < z,

If z,‘ < z < IP*

If z > IP*
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d 2V,(z)
dz2

0

d2L , ( z , IP ; )

dz2 

d 2V , { z , z , z ) 
dz2

If z < z,

If z /  < z < IP*

If z > IP ’

d 2V (z z z)
We can claim — >0 by the convexity of Vt { z , z , z )  and L, ( z , / / f ) with 

respect to z.  The convexity of Vt ( z ,z ,z )  is implied by the following expression:

V, ( z , z , z )  = L, (z , z ) +  _[ R, ( z ) f t r  (Zr )d£ r  ,

where Ll (z,z) = h r ^ z - % x_^f i r {^r ^d%r  is convex in z ( > 0) and R,{y) is 

convex in y . We are now ready to claim that Vt (z) is convex in z since

C l, e  +

dLt ( z , IP ; )  . d V , (z , z , IP )
—  -------- > c,„ for z, < z  and — -- ’

dz ~ dIP

from above that V't (z)  = - c , e for z < 0.

>0  for z > I P * . It is seen

C.3. Proof of Theorem 10.

1) Differentiating Vx( z , z , IP ) with respect to IP  yields

dVx(z ,z , IP )

dIP = L M ^ U) K r i I P - u) du

where

Cln+P l r ~Pl l f« < 0  

_ dR{ {u)

since
v

dRx (w) 
du = ~P\

du
If « > 0
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It can be seen that M,(w) changes sign once over ( - 00,oo). As a result,

dV ( z,z,IP)
—  —  changes sign once over ( - 00,00) with respect to IP.  Therefore,

Vx (z,z,IP) is unimodal in IP and the minimum is achieved at IP* (> 0).

2) Similar to the proof for part 2 of Theorem 8.

3) Similar to the proof for Theorem 9. H

C.4. Proof of Proposition 1.

dV,(z,z,IP)It is seen from Theorem 9 that z, satisfies — — L = 0, i.e.,
dz

= — — - — — . Then the proof follows from basic probability
Pt.r ^  t,r

properties. m

C.5. Proof of Proposition 2.

With a little algebra, we can have

= c '~  +  { p < x  C A -  f e  ) d -  P , x  f  L _  I x  f e -  ) I x  f e -  ) d 4 x d 4 ,

+ k A '  V r

*  J J y-> '( iP - t , . - 4, fe,  (4, )J4,,J4r

dV (z_,z,lP) .
Thus, —  --------- -  increases as one of c, . p and h ,+ increases; And

dIP l*

dV (z_,z,IP) ,
—  --------- - decreases as one of p and p, increase. These observations lead

dIP '

to Proposition 2 by the unimodality of V, (z^zJP) . a

C.6. Proof of Theorem 11.
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dV, (z^,z,IP)
1) If cf  - c . n+ hf A < 0, then — L- ^ ------- - < 0 for any z > 0. By the convexity of

V (z , z , IP ) with respect to z ,  we see that the optimal value of z , z * , would be 

as large as possible. However, it is limited from above by IP  * . Thus z *  = I P * . 

The proof for the convexity is similar to the proof for Theorems 8 and 9.

d V ( z , z , I P )
2) If c. >c .  + £> , t h e n — — - >  0 for any z >0.  Therefore, z. would be7 t  ,e t  ,n r t ’ q  J  ’  t

as small as possible. However, it is limited from below by z . Thus z * = z .  From

dV (z_,z_,IP)
Theorem 8, I P *  is uniquely determined by — - ’— - = 0. The proof for the 

convexity and unimodality is similar to the proof for Theorems 8 and 9.H

C.7. Discussion for the Shortage Assumption

Throughout our discussion above, we assumed that shortages in a period are 

backordered with penalty feature. In this appendix, we discuss its opposite 

cases: case I assumes that, in every period, shortages unmet from the slow 

delivery are lost; and case II assumes that, in every period, shortages are all lost 

or backordered without penalty feature. Although case I still requires demand 

functions to be PF2, case II does not require so. We follow similar notation with a 

little adjustment.

C.7.1. Case I

In this subsection, we assume that the demand unmet from the slow delivery is 

lost in each period. pt r  represents unit backorder cost in the first interval; p

represents the unit lost-sale cost in period T - t  + 1. We assume that

P , x + h< x ~ c< - C',» +  P,.A- > c >.e' and P,x >maK{e'.»’c>,c’c> 1.4- We adjust the 

expressions for R t ( y ) ,  Lt {z , IP ) and Vt { z , z , IP ) as follows

W  = P,.rE[(^. ->■)*] + r ] + ^
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+ h EL , (z , IP )  = P i l _E \m  i n j ( £ r  - z )  , ( l P - z )  J 

^ ( z , z , / F )  = C, , ( z - z )  + z , . ( / P - z )  + L , ( z , / P ) + f ; i , ( / i > - ^  ) ^  ( ^  )< ^

It is easy to see that Lt (z,IP) is separable, convex in z and concave in I P , and 

that R, (>>) is convex in y . Using an approach similar to that in Section 3, we can 

show that Vt (z,z, IP)  is unimodal in IP,  and that Vt (z,z, IP ) is convex in z. 

Corresponding results can be derived.

C.7.2. Case II

For the cases where shortages are all lost or backordered without penalty 

feature, we do not require that demand density functions fall in PF2. We first

discuss the case for lost-sales. Then we discuss the case for backordering.

In the case for all lost-sales, IP means the quantity for the slow order, 

instead of the inventory position after the purchase decision at the beginning of 

each period, p  and p + represent, respectively, unit lost-sale costs in the first

and second interval of period T - t  + l .  The following assumptions are used: 1) 

Pi a* + h,x> ~ c/-i,e - 0 '> 2) pt r  +h - ~PtV ^ 0 .  We adjust the expressions for

R,(y), Lt {z,IP) and Vt (z,z, IP)  as follows

( + - y ) h ( y - + ) ‘ + E

h ,_E i z ~ + )

K,(z,z,/F) = z , , ( z - z )  + z „ ;P  + 4 ( z , ; P ) + f F , ( / F  + ( z - ^ ) * ) / J )d t , „

We are now ready to present the decision problem in period T - t  + l below.

= ■■■ (P5'2)

That is, the decision is to choose the optimal inventory level z* and the optimal 

order quantity IP*. Vt (z) is therefore the minimum expected cost for the last t
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periods with a beginning inventory level z before the order decision. We assume

V0{z) = 0.

We solve (P5.2) in a recursive way. In particular, we show that 1) Vt (z) is convex 

and F('(0 ) = -c te, provided that y,_,(z) is convex and Vt x(0) = t,; and 2)

V^z)  is convex and F,'(0) = - c le.

To do so, we first study the properties of the functions R,(y ) and 

Lt (z,IP).  In particular, we show that 1) R,(IP) is convex in IP]  2) Lt (z,IP ) is 

convex in z .

The convexity of Rt (^ )  can be seen from the derivatives below:

= ~(P,x + K r  ) f  l , r  fe  K +., + f  K-; (y -  ̂  ) f lX fe )+ K ,

d_ R,{y) _ ^ + +h^ - Cl_Xe) i x  (j)+ (^)
dy

2

d2R, (y) 
dIP2

where — ^  \  2 >0 is because both terms are non-negative. In addition, we have

Lt (z,IP) is free of I P . The convexity of Lt (z , IP )  with respect to z is seen from 

the fact Lt [ z , I P ) is effectively the sum of the newsvendor-type expected 

shortage and holding costs for a beginning inventory z .

We are now ready to derive the properties for Vt [ z , z , I P ). We form it in 

the following theorem.

Theorem 12.

1) K{z>z’ IR) >s convex in IP  for given z ( > z ) ,  and there is a unique I P * (z) 

minimizing Vt (z^,z,IP) with respect to IP  over [0,oo).
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2) Vt [z,z,IP* (z)) is convex in z , and there is a unique z* (> 0) satisfying

dv \z ,z , ip ;  (z)) ( \ r ? ( z \ ^
---------- ^ + K r  - \ P , x  + h r  ) I  h r  ( £ -  ) d$r

f ^ K ( z ) + z - ^ ) ^ - f e - K - = °+

Proof.  1) With a little algebra, differentiating V, ( z ,z , IP )  with respect to IP  yields

+ J X ( f f + 2 - 4 i . )7U («, K  + [K ( i r ) f , ,  (f, Ka//5

£M/p+z-OT,-te-R-+ f  R:(Ip)l,A ^ M r20-
The expressions above imply that Vt {z , z , IP )  is convex in IP  for given z by the 

convexity of /?, (.y). Therefore IP* {z)  is unique for a given z ( > z ) ,  and IP* (z) is 

continuous in z . In addition, we have

_ « * ) _  f ^ + z - O T > - f e - K

I P= / P ' { z )
*  I  R ; ( i p + z - ^ _ ) l a_ ( ^ .  ) ^ .  + j f  * /  )d4x

2) Recall the expressions for Vt (z,z, IP*  ( z j ) , L , ( z , IP )  and R, ( y ) .  With a little 

algebra, we get

dv,(z,z IP, (?)) = ^  + ^  + ^  ♦ j ;* / ( / / ; - ) t u . { ( ,  )J4,

d2v,(z,z,ip;(z))

dz2

>o (v * ;( / / ;• )  2 - ^ . )
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d2Vt (z^,z,IP* (z))
Therefore  — —;-------- -> 0  implies V,yz,z,IPt (z)J is convex in z . It is easy to

dz1

see that z*  >0 from
dVt (z,z, IP*  (z))

dz
< 0 .

2=0

Then the optimal order rule at time / is: 1) to order IP* (z,*) units for the slow 

delivery and order z* - z  units for the fast delivery if z<z,*; 2) to order IP* (z )  

units for the slow delivery if z > z * . Then by the definition of Vt ( z ) , we have

F , ( z , z / , / / f  (z /) )  If z < z /

Vt { z , z J P *  [ z ] )  If z > z *

We next show that Vt ( z )  is convex in z.  We form it in the following 

theorem.

K U )  =

Theorem 13. V \z )  is convex in z and V,'(0) = - c ,(

Proof. Taking derivatives for Vt (z )  yields

s k U - z<i p ' ( z))dV.U)
dz ~Ct,e+ - dz

If z < z,

If z > z.

Since Vt [z_,z,lP* (z)) is convex in z and its minimum is obtained at z = z,‘ ,

dVt [z_,z,IP* (z))

dz
>0 for z >z *  Thus dv, U )

dz

dV, (z)
dz

for any

z, < z / , z 2 > z * .  Thus, we can claim that Vt (z )  is convex in z,  taking into account

d 2V,(z)  ,
that — -j 2 ’ > 0 . It is obvious that Vt (0) = -c,  e. H
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Following the above logic, we can show that Vx (z) is convex (since V0 (z)  = 0) 

and V[ (0) = - c ]e . This completes the induction.

The static case of Milner and Kouvelis (2002) discussed essentially a one- 

period variant of our problem. The partial dynamic case of Milner and Kouvelis 

(2002) discussed essentially a two-period variant of our problem where the first 

period has only the fast-delivery mode and the second period has only the slow- 

delivery mode.

In the case when all shortages are backordered, IP  represents the 

inventory position after the purchase decision. p and p  represent,

respectively, unit backorder costs in the first and second interval of period 

T - t  + l .  We assume that cte < c t>n + p  . We adjust the expressions for

L t (z , IP )  and Vt (z , z , IP )  as follows:

R,(y) = P ,A (4 l. -y) t ] + hx E \ ( y - ^ \ E [ v M(y - i i .)

K ( z , z , I P )  = cJ z - 2 ) + c ,J P  + L , { z , I P ) + [ R , ( ! P - ^ ) f i r ( ^ ) d ^

It can be seen that R, (j>) is convex in y  ; 2) Lt (z,IP ) is convex in z and free of 

IP . And similarly, we can have the following theorem.

Theorem 14.

1) Vt (z,z,IP)  is convex in IP for given z , and there is a unique IP' satisfying

d- V,{% Zp 'P) = c , . ^ R:(, p -i>. ) l ,  fe  R  =»■

2) Vt (z , z , IP ) is convex in z , and there is a unique z*  satisfying
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dVt (z ,z , IP)

dz '-c' * +h,x ~{p,x +h, r  ) f  l x  (̂ r )dZx- ==  0

Proof. Similar to the proof for Theorem 8..

Suppose z*  < I P * , the optimal order rule in period T - t  + l is : 1) to purchase 

IP* - z *  units for the slow order and purchase z* - z  units for the fast order if 

z_<z*\  2) to purchase IP* - z  units for the slow order if z* < z < I P *  and not to 

purchase if z > I P * . Then by the definition of Vt ( z ) , we have

Vt (z , z * , IP * )  l f z < z *

V,{z) = \ V' { z ’ Z-’ Ip ’ )
V, {l_, JL £)  If z > IP*

Theorem 15. Vt (z) is convex in z and V't (0) = - c t e.

Proof. Similar to the proof of Theorem 9..

If IP* < z * , then only the order for the fast delivery is placed and the target level 

IP* satisfies

■ dR,( lP -4k.)
C > ,e  +

dL , (z , IP )
az

+
dL, (z , IP)

8IP
+

dIP

In this case, the optimal ordering rule is: to purchase IP* - z  units for the fast 

order if z < IP* and not to purchase if z > I P * . It can be seen that Vt ( z ) , after 

making corresponding changes, is still convex in z .

Following the above logic, we can show that Vt (z) is convex (since Vn (z) = 0)  

and V’ (0) = - c Le. This completes the induction.
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To close the discussion for the case when shortages are backordered without 

penalty feature, we point out that Barnes-Schuster et al. (2002) discussed 

essentially a two-period variant of this case such that A = 1, there is only one 

supply mode in the second period with a limit on the order quantity, and this limit 

is determined in the first period.
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